PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of electrolyte addition on flotation response of coal

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the flotation of naturally hydrophobic coal particles in salt solutions with different cations (Na+, Ca2+, and Al3+) was investigated to clarify the flotation enhancement mechanism. The surface chemistry aspects were examined using the zeta potential measurements and bubble-particle attachment time experiments. The results of the flotation experiments showed that the presence of electrolytes in the flotation system clearly enhanced the flotation performance in a manner dependent on the type and concentration of the electrolytes. In the experiments, the AlCl3 and NaCl solutions showed the highest and the lowest flotation performance improvements, respectively. The zeta potential measurements showed that AlCl3 had a stronger influence on the surface charge of coal particles than CaCl2 or NaCl did. The induction time measurements indicated that the attachment decreased with increasing salt concentration and ionic valency state. In addition, abundant fine bubbles were generated in higher concentration salt solutions, particularly for the AlCl3 solutions, which prevented from the bubble coalescence and increased froth stability. It is concluded that the addition of salt solutions to a flotation system enhances the coal flotation performance, particularly for high-valence electrolyte solutions, which is attributed to the abundance of finer bubbles in the froth phase, depending on the type and concentration of the electrolyte.
Rocznik
Strony
257--267
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • National Engineering Research Center for Coal Processing and Purification, China University of Mining and Technology, Xuzhou 221116, China
Bibliografia
  • 1. ARNOLD B.J., APLAN F.F., 1989, The hydrophobicity of coal macerals. Fuel, 68, 651–658.
  • 2. BOURNIVAL G., PUGH R.J., ATA S., 2012, Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation. Minerals Engineering, 25, 47–53.
  • 3. CRAIG V.S.J., NINHAM B.W., PASHLEY R. M., 1993, Effect of electrolytes on bubble coalescence. Nature, 364, 317–319.
  • 4 DISHON M., ZOHAR O., SIVAN U., 2009, From repulsion to attraction and back to repulsion: the effect of NaCl, KCl, and CsCl on the force between silica surfaces in aqueous solution. Langmuir, 25, 2831–2836.
  • 5. GU G.X., XU Z.H., NANDAKUMAR K., MASLIYAH J., 2003, Effects of physical environment on induction time of air-bitumen attachment. International Journal of Mineral Processing, 69, 235–250.
  • 6. HAMPTON M.A., NGUYEN A.V., 2009, Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation. Minerals Engineering, 22, 786–792.
  • 7. HARVEY P.A., NGUYEN A.V., EVANS G.M., 2002, Influence of electrical double-layer interaction on coal flotation. Journal of Colloid and Interface Science, 250, 337–343.
  • 8. KURNIAWAN A.U., OZDEMIR O., NGUYEN A.V., OFORI P., FIRTH B., 2011, Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. International Journal of Mineral Processing, 98, 137–144.
  • 9. LASKOWSKI J., 1965, Coal flotation in solutions with raised concentration of inorganic salts. Colliery Guardian, 361–365.
  • 10. LI C., SOMASUNDARAN P., 1991, Reversal of bubble charge in multivalent inorganic salt solutions—effect of magnesium. Journal of Colloid and Interface Science, 146, 215–218.
  • 11. LI C., SOMASUNDARAN P., 1993, Reversal of bubble charge in multivalent inorganic salt solutions—effect of lanthanum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 81, 13–15.
  • 12. LI C., SOMASUNDARAN P., 1993, Role of electrical double layer forces and hydrophobicity in coal flotation in sodium chloride solutions. Energy Fuels, 7, 244–248.
  • 13. LI C., SOMASUNDARAN P., HARRIS C.C., 1993, A levitation technique for determining particle hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 70, 229–232.
  • 14. MARRUCCI G., NICODEMO L., 1967, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes. Chemical Engineering Science, 22, 1257–1265.
  • 15. MARCELLJA S., 2006, Selective coalescence of bubbles in simple electrolytes. The Journal of Physical Chemistry, 110, 13062–13067.
  • 16. NGUYEN A.V., RALSTON J., SCHULZE H.J., 1998, On modelling of bubble–particle attachment probability in flotation. International Journal of Mineral Processing, 53, 225–249.
  • 17. OZDEMIR, O., TARAN, Surface chemistry aspects of coal flotation in bore water. International Journal of Mineral Processing, 92, 177–183.
  • 18. OZDEMIR, O., 2013, Specific ion effect of chloride salts on collectorless flotation of coal. Physicochemical Problems of Mineral Processing, 49(2), 511–524.
  • 19. PAULSON O., PUGH R.J., 1996, Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes. Langmuir, 12, 4808–4813.
  • 20. PUGH R.J., WEISSENBORN P., PAULSON O., 1997, Flotation in inorganic electrolytes: the relationship between recovery of hydrophobic particles, surface tension, bubble coalescence and gas solubility. International Journal of Mineral Processing, 51, 125–138.
  • 21. SUBRAHMANYAM T.V., FORSSBERG E., 1988, Froth stability, particle entrainment and drainage in flotation—A review. International Journal of Mineral Processing, 23, 33–53 .
  • 22. WEISSENBORN P.K., PUGH R.J., 1996, Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence. Journal of Colloid and Interface Science, 184, 550–563.
  • 23. WELLHAM E.J., ELBER L., YAN D.S., 1992, The role of carboxy methyl cellulose in the flotation of a nickel sulfide transition ore. Minerals Engineering, 5, 381–395.
  • 24. YE Y., KHANDRIKA S.M., MILLER J.D., 1989, Induction-time measurements at a particle bed. International Journal of Mineral Processing, 25, 221–240.
  • 25. YOON R.H., 1982, Flotation of coal using micro-bubbles and inorganic salts. Mining Congress Journal, 68, 76–80.
  • 26. YOON R.H., SABEY J.B., 1989, Coal flotation in inorganic salt solution. In: Botsaris, G.D., Glazman, Y.M. (Eds.). Interfacial phenomena in coal technology, New York: Marcel Dekker, 87–114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52f47c3a-2421-4693-8356-59997c27c237
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.