PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evaluation of different probing systems used in articulated arm coordinate measuring machines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comparison of different techniques to capture nominal data for its use in later verification and kinematic parameter identification procedures for articulated arm coordinate measuring machines (AACMM). By using four different probing systems (passive spherical probe, active spherical probe, self-centering passive probe and self-centering active probe) the accuracy and repeatability of captured points has been evaluated by comparing these points to nominal points materialized by a ball-bar gauge distributed in several positions of the measurement volume. Then, by comparing these systems it is possible to characterize the influence of the force over the final results for each of the gauge and probing system configurations. The results with each of the systems studied show the advantages and original accuracy obtained by active probes, and thus their suitability in verification (active probes) and kinematic parameter identification (self-centering active probes) procedures.
Rocznik
Strony
233--246
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • 13A, University of Zaragoza, Maria de Luna 3, E-50018 Zaragoza, Spain
  • 13A, University of Zaragoza, Maria de Luna 3, E-50018 Zaragoza, Spain
  • 13A, University of Zaragoza, Maria de Luna 3, E-50018 Zaragoza, Spain
  • 13A, University of Zaragoza, Maria de Luna 3, E-50018 Zaragoza, Spain
Bibliografia
  • [1] Santolaria, J., Brau, A., Velázquez, J., Aguilar, J. J. (2010). A self-centering active probing technique for kinematic parameter identification and verification of articulated arm coordinate measuring machines. Meas. Sci. Technol., 21(5), 055101.
  • [2] Gatti, G., Danieli, G. (2008). A practical approach to compensate for geometric errors in measuring arms: application to a six-degree-of-freedom kinematic structure. Meas. Sci. Technol., 19(1), 015107.
  • [3] Kovac, I., Frank, A. (2001). Testing and calibration of coordinate measuring arms. Precis. Eng., 25(2), 90-99.
  • [4] Denavit, J., Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J. Appl. Mech, 23, 215-221.
  • [5] Hayati, S., Mirmirani, M. (1985). Improving the absolute positioning accuracy of robot manipulators. J. Robot. Syst., 2(4), 397-413.
  • [6] Elatta, A. Y., Gen, Pei L., Zhi Liang, F., Daoyuan, Y., Fei, L. (2004). An Overview of Robot Calibration. Inf. Technol. J., 3(1), 74-78.
  • [7] Santolaria, J., Aguilar, J., Yague, J., Pastor, J. (2008). Kinematic Parameter Estimation Technique for Calibration and Repeatability Improvement of Articulated Arm Coordinate Measuring Machines. Precis. Eng., 32(4), 251-268.
  • [8] Ratajczyk, E., Rak, M., Kowaluk, T. (2012). The influence of method of point collection on results with the use of a measuring arm. Metrol. Meas. Syst., XIX(3), 541-552.
  • [9] Everett, L., Driels, M., Mooring, B. (1987). Kinematic modelling for robot calibration. Proceedings. 1987 IEEE International Conference on Robotics and Automation, Institute of Electrical and Electronics Engineers, 183-189.
  • [10] Huang, C., Xie, C., Zhang, T. (2008). Determination of optimal measurement configurations for robot calibration based on a hybrid optimal method. 2008 International Conference on Information and Automation, 789-793.
  • [11] Roth, Z., Mooring, B., Ravani, B. (1987). An overview of robot calibration. IEEE J. Robot. Autom., 3(5), 377-385.
  • [12] Hamana, H., Tominaga, M., Ozaki, M., Furutani, R. (2010). Calibration of Articulated Arm Coordinate Measuring Machine Considering Measuring Posture. 10th Internanational Symposium on Measurement and Quality Control, 5-8.
  • [13] Piratelli-filho, A., Henrique, F., Fernandes, T., Valdés, R. (2012). Application of Virtual Spheres Plate for AACMMs evaluation. Precis. Eng., 36(2), 349-355.
  • [14] Zheng, D., Du, C., Hu, Y. (2012). Research on optimal measurement area of flexible coordinate measuring machines. Measurement, 45(3), 250-254.
  • [15] Kupiec, M. (2012). Coordianate Measurment Systems Cmm and Cma - Characteristc and Methods of Their Accuracy Evaluation. Adv. Sci. Technol. - Res. J., 6(16), 17-23.
  • [16] Sładek, J., Ostrowska, K., Gąska, A. (2013). Modeling and Identification of Errors of Coordinate Measuring Arms with the Use Of A Metrological Model. Measurement, 46, 667-679.
  • [17] Li, X. H., Chen, B., Qiu, Z. R. (2012). The Calibration and Error Compensation Techniques for an Articulated Arm CMM with two Parallel Rotational Axes. Measurement, 46(1), 603-609.
  • [18] Alici, G., Shirinzadeh, B. (2005). A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mech. Mach. Theory, 40(8), 879-906.
  • [19] Gong, C., Yuan, J., Ni, J. (2000). Nongeometric error identification and compensation for robotic system by inverse calibration. Int. J. Mach. Tools Manuf., 40(14), 2119-2137.
  • [20] Ali, S. H. R. (2010). Probing System Characteristics in Coordinate Metrology. Meas. Sci. Rev., 10(4), 120-129.
  • [21] Weckenmann, A., Estler, T., Peggs, G., McMurtry, D. (2004). Probing Systems in Dimensional Metrology. CIRP Ann. - Manuf. Technol., 53(2), 657-684.
  • [22] ASME B89.4.22:, (2004). Performance Evaluation of Articulated Arm Coordinate Measuring Machines.
  • [23] Trapet, E., Aguilar Martin, J., Yague, J., Spaan, H., Zeleny, V. (2006). Self-centering probes with parallel kinematics to verify machine-tools. Precis. Eng., 30(2), 165-179.
Uwagi
EN
The support of Consejo Nacional de Ciencia y Tecnología (Concayt) and Dirección. General de Educación Superior Tecnológica (DGEST) is deeply acknowledged by the first and second authors. This work was supported by the DICON Innpacto Project (IPT-2011-1191-020000), Development of new advanced dimensional control systems in manufacturing processes of high-impact sectors. A preliminary version of the results was presented at the XIX IMEKO World Congress Fundamental and Applied Metrology, “Performance evaluation of probing systems in data capture for kinematic parameter identification and verification of articulated arm coordinate measuring machines”, Lisbon, Portugal, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52f26118-57fa-4d5b-a00d-25ba88628a37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.