PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of mechanical and morphological properties of CCTO-BT/epoxy composite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The demand for environment-friendly ceramic reinforced polymer matrix composite (CRPMC) fabrication leads to the development of lead-free CRPMC. Calcium copper titanate (CCTO) and barium titanate (BT) are two of the most widely used lead-free ceramics for embedded capacitor applications. In the present study, the mechanical and morphological properties of both single and hybrid ceramic (CCTO and BT) filled epoxy composites were evaluated and compared with the unfilled pure epoxy resin. Hand lay-up followed by the compression molding technique were used to synthesize the CRPMC samples. Among the single filler CRPMCs, the BT/epoxy composite exhibited better mechanical properties and density values than the CCTO/epoxy composite. The 60:40 ratio hybrid CCTO-BT/epoxy composite possessed the highest mechanical properties and density values in contrast to the other composite specimens. The SEM micrographs of the fractured surfaces of the BT and CCTO CRPMC specimens were found to have a rougher and wavier appearance than the unfilled epoxy.
Rocznik
Strony
123--128
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Veer Surendra Sai University of Technology, Burla, Odisha, India 768018
  • Veer Surendra Sai University of Technology, Burla, Odisha, India 768018
  • Parala Maharaja Engineering College, Berhampur, Odisha, India 761003
  • Veer Surendra Sai University of Technology, Burla, Odisha, India 768018
  • Veer Surendra Sai University of Technology, Burla, Odisha, India 768018
  • Veer Surendra Sai University of Technology, Burla, Odisha, India 768018
Bibliografia
  • [1] Kumar R., Singh R., Hashmi M.S.J., Polymer-ceramic composites: A state of art review and future applications, Adv. Mater. Process. Technol. 2020, 1-14.
  • [2] Chung D.D.L., Polymer-matrix composites for microelectronics, Polym. Polym. Compos. 2000, 8(4), 219-230.
  • [3] Nilagiri Balasubramanian K.B., Ramesh T., Role, effect, and influences of micro and nano‐fillers on various properties of polymer matrix composites for microelectronics: a review, Polym. Adv. Technol. 2018, 29(6), 1568-1585.
  • [4] Prymark J., Bhattacharya S., Paik K., Tummala R.R., Fundamentals of passives: Discrete integrated and embedded, [in:] Fundamentals of Microsystems Packaging, McGrawHill Book Company, New York 2001.
  • [5] Sebastian M.T., Jantunen H., Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review, Int. J. Appl. Ceram. Technol. 2010, 7(4), 415-434.
  • [6] Saidina D.S., Norshamira A., Mariatti M., Dielectric and thermal properties of CCTO/epoxy composites for embedded capacitor applications: mixing and fabrication methods, J. Mater. Sci.: Mater. Electron. 2015, 26(10), 8118-8129.
  • [7] Samanta B., Kumar P., Nanda D., Dielectric and mechanical properties of CaCu3Ti3. 925 (Nb0. 5Al0. 5) 0.075 O12 & Al reinforced epoxy-composites (0-3) for embedded capacitor applications, Ceram. Int. 2022, 48(8), 11064-11073.
  • [8] Zhou X., Cheng G.C., He Y., Xiong W.P., Research of high dielectric constant of polymer matrix composites and its application for energy saving, In Adv. Mater. Res. 2012, 578, 63-66.
  • [9] Saidina D.S., Mariatti M., Julie M.J., Dielectric properties and thermal properties of calcium copper titanate and barium titanate hybrid fillers filled epoxy thin film composites for electronic packaging applications, J. Mater. Sci.: Mater. Electron. 2015, 26(8), 6245-6251.
  • [10] Saidina D.S., Mariatti M., Julie M.J., Properties of calcium copper titanate and barium titanate filled epoxy composites for electronic applications: effect of filler loading and hybrid fillers, J. Mater. Sci.: Mater. Electron. 2014, 25(11), 4923-4932.
  • [11] Sathish S., Kumaresan K., Prabhu L., Gokulkumar S., Karthi N., Vigneshkumar N., Experimental investigation of mechanical and morphological properties of flax fiber reinforced epoxy composites incorporating SiC and Al2O3 , Mater. Today: Proc. 2020, 27, 2249-2253.
  • [12] Jeyakumar R., Sampath P.S., Ramamoorthi R., Ramakrishnan T., Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites, Int. J. Adv. Manuf. Technol. 2017, 93(1), 527-535.
  • [13] Ogitani S., Bidstrup-Allen S.A., Kohl P.A., Factors influencing the permittivity of polymer/ceramic composites for embedded capacitors, IEEE Trans. Adv. Packag. 2000, 23(2), 313-322.
  • [14] Eltouby P., Shyha I., Li C., Khaliq J., Factors affecting the piezoelectric performance of ceramic-polymer composites: A comprehensive review, Ceram. Int. 2021.
  • [15] Nunes-Pereira J., Sencadas V., Correia V., Rocha J.G., Lanceros-Mendez S., Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ ceramic composites, Sens. Actuators A, 2013, 196, 55-62.
  • [16] HPS A.K., Saurabh C.K., Asniza M., Tye Y.Y., Fazita M.R.N., Syakir M.I., ... & Suraya N.L.M., Nanofibrillated cellulose reinforcement in thermoset polymer composites, [in:] Cellulose-Reinforced Nanofibre Composites 2017, 1- 24.
  • [17] Joseph K., Varghese S., Kalaprasad G., Thomas S., Prasannakumari L., Koshy P., Pavithran C., Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur. Polym. J. 1996, 32(10), 1243-1250.
  • [18] Luangchuang P., Chueangchayaphan N., Sulaiman M.A., Chueangchayaphan W., Evaluation of cure characteristic, physico‐mechanical, and dielectric properties of calcium copper titanate filled acrylonitrile‐butadiene rubber composites: Effect of calcium copper titanate loading, J. Appl. Polym. Sci. 2020, 137(38), 49136.
  • [19] Mishra S., Mishra P., Synthesis and characterization of CCTO0. 5-BT0. 5/epoxy hybrid ceramic polymer composite for electronic applications, Mater. Today: Proc. 2022.
  • [20] Saidina D.S., Mariatti M., Juliewatty J., Tensile and dielectric properties of calcium copper titanate filler in epoxy composites, Adv. Mater. Res. 2015, 1107, 119-124.
  • [21] Voo R., Mariatti M., Sim L.C., Properties of epoxy nanocomposite thin films prepared by spin coating technique, J. Plast. Film Sheeting 2011, 27(4), 331-346.
  • [22] Poh C.L., Mariatti M., Fauzi A., Ng C.H., Chee C.K., Chuah T.P., Tensile, dielectric, and thermal properties of epoxy composites filled with silica, mica, and calcium carbonate, J. Mater. Sci.: Mater. Electron. 2014, 25(5), 2111-2119.
  • [23] Wu C.L., Zhang M.Q., Rong M.Z., Friedrich K., Tensile performance improvement of low nanoparticles filledpolypropylene composites, Compos. Sci. Technol. 2002, 62(10-11), 1327-1340.
  • [24] Pargi M.N.F., Teh P.L., Hussiensyah S., Yeoh C.K., AbdGhani S., Recycled-copper-filled epoxy composites: the effect of mixed particle size, Int. J. Mech. Mater. 2015, 10(1), 1-10.
  • [25] Montoya-Dávila M., Pech-Canul M.A., Pech-Canul M.I., Effect of bi- and trimodal size distribution on the superficial hardness of Al/SiCp composites prepared by pressureless infiltration, Powder Technol. 2007, 176(2-3), 66-71.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52eff754-ac7d-43ad-9490-c7f26ff8c3de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.