Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We provide a convenient way to actively control the wavelength conversion of probe waves based on the soliton dynamics in the As2S3 fibers. In this paper, it is found by numerical calculation that wavelength conversion occurs in the frequency domain due to the existence of refractive index barrier. By adjusting the collision position of pump pulse and probe pulse to realize the conversion of probe pulse wavelength, the effect of the power and the incident wavelength of the probe wave on the wavelength conversion are also discussed. This frequency domain conversion is of great use in the mid-infrared region, for example, all-optical conversion switches.
Czasopismo
Rocznik
Tom
Strony
419--429
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- College of Computer Science and Electronic Engineering, Key Laboratory for Micro/Nato Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China
autor
- Hunan University of Chinese Medicine, Changsha 410082, China
autor
- College of Computer Science and Electronic Engineering, Key Laboratory for Micro/Nato Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China
autor
- College of Computer Science and Electronic Engineering, Key Laboratory for Micro/Nato Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China
autor
- College of Computer Science and Electronic Engineering, Key Laboratory for Micro/Nato Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 10008, China
Bibliografia
- [1] CHENG T., NAGASAKA K., TUAN T.H., XUE X., MATSUMOTO M., TEZUKA H., SUZUKI T., OHISHI Y., Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber, Optics Letters 41(9), 2016: 2117-2120. https://doi.org/10.1364/OL.41.002117
- [2] SCHLIESSER A., PICQUÉ N., HÄNSCH T.W., Mid-infrared frequency combs, Nature Photonics 6(7), 2012: 440-449. https://doi.org/10.1038/nphoton.2012.142
- [3] DEMIRCAN A., AMIRANASHVILI S., STEINMEYER G., Controlling light by light with an optical event horizon, Physical Review Letters 106(16), 2011: 163901. https://doi.org/10.1103/PhysRevLett.106.163901
- [4] DENG Z., LIU J., HUANG X., ZHAO C., WANG X., Active control of adiabatic soliton fission by external dispersive wave at optical event horizon, Optics Express 25(23), 2017: 28556-28566. https://doi.org/10.1364/OE.25.028556
- [5] DUDLEY J.M., GENTY G., COEN S., Supercontinuum generation in photonic crystal fiber, Reviews of Modern Physics 78(4), 2006: 1135-1184. https://doi.org/10.1103/RevModPhys.78.1135
- [6] EL-AMRAOUI M., FATOME J., JULES J.C., KIBLER B., GADRET G., FORTIER C., SMEKTALA F., SKRIPATCHEV I., POLACCHINI C.F., MESSADDEQ Y., TROLES J., BRILLAND L., SZPULAK M., RENVERSEZ G., Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers, Optics Express 18(5), 2010: 4547-4556. https://doi.org/10.1364/OE.18.004547
- [7] GOUVEIA-NETO A.S., FALDON M.E., TAYLOR J.R., Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers, Optics Letters 13(9), 1988: 770-772. https://doi.org/10.1364/OL.13.000770
- [8] GU J., GUO H., WANG S., ZENG X., Probe-controlled soliton frequency shift in the regime of optical event horizon, Optics Express 23(17), 2015: 22285-22290. https://doi.org/10.1364/OE.23.022285
- [9] HUANG Y., YANG H., ZHAO S., MAO Y., CHEN S., Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions, Results in Physics 23, 2021: 104033. https://doi.org/10.1016/j.rinp.2021.104033
- [10] MISHRA V., SINGH S.P., HALDAR R., MONDAL P., VARSHNEY S.K., Intermodal nonlinear effects mediated optical event horizon in short-length multimode fiber, Physical Review A 96(1), 2017: 013807. https://doi.org/10.1103/PhysRevA.96.013807
- [11] PARK K., NA J., KIM J., JEONG Y., Numerical study on supercontinuum generation in an active highly nonlinear photonic crystal fiber with anomalous dispersion, IEEE Journal of Quantum Electronics 56(2), 2020: 6800109. https://doi.org/10.1109/JQE.2020.2974519
- [12] PETERSEN C.R., ENGELSHOLM R.D., MARKOS C., BRILLAND L., CAILLAUD C., TROLÈS J., BANG O., Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers, Optics Express 25(13), 2017: 15336-15348. https://doi.org/10.1364/OE.25.015336
- [13] ROSENBERG Y., Optical analogues of black-hole horizons, Philosophical Transactions of the Royal Society A 378(2177), 2020: 20190232. https://doi.org/10.1098/rsta.2019.0232
- [14] ROBICHAUD L.R., FORTIN V., GAUTHIER J.C., CHÂTIGNY S., COUILLARD J.-F., DELAROSBIL J.-L., VALLÉE R., BERNIER M., Compact 3–8 μm supercontinuum generation in a low-loss As2 Se3 step-index fiber, Optics Letters 41(20), 2016: 4605-4608. https://doi.org/10.1364/OL.41.004605
- [15] RONG J., MA Y., XU M., YANG H., Interactions of the second-order solitons with an external probe pulse in the optical event horizon, Chinese Optics Letters 20(11), 2022: 111901. https://doi.org/10.1364/COL.20.111901
- [16] RONG J., YANG H., XIAO Y., CHEN Y., Mutual manipulation between a dark soliton and a probe wave for the gray-dark solitonic well, Physical Review A 103(2), 2021: 023505. https://doi.org/10.1103/PhysRevA.103.023505
- [17] ROTHENBERG J.E., Colliding visible picosecond pulses in optical fibers, Optics Letters 15(8), 1990: 443-444. https://doi.org/10.1364/OL.15.000443
- [18] SKRYABIN D.V., GORBACH A.V., Colloquium: Looking at a soliton through the prism of optical supercontinuum, Reviews of Modern Physics 82(2), 2010: 1287. https://doi.org/10.1103/ RevModPhys.82.1287
- [19] SUKHOIVANOV I.A., IAKUSHEV S.O., SHULIKA O.V., SILVESTRE E., ANDRÉS M.V., Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550 nm, Journal of Lightwave Technology 35(17), 2017: 3772-3779.
- [20] THÉBERGE F., BÉRUBÉ N., POULAIN S., COZIC S., CHÂTIGNY S., ROBICHAUD L.-R., PLEAU L.-P., BERNIER M., VALLÉE R., Infrared supercontinuum generated in concatenated InF3 and As2Se3 fibers, Optics Express 26(11), 2018: 13952-13960. https://doi.org/10.1364/OE.26.013952
- [21] WEBB K.E., ERKINTALO M., XU Y., BRODERICK N.G.R., DUDLEY J.M., GENTY G., MURDOCH S.G., Nonlinear optics of fibre event horizons, Nature Communications 5(1), 2014: 4969. https://doi.org/10.1038/ncomms5969
- [22] XIA C., KUMAR M., CHENG M.-Y., HEGDE R.S., ISLAM M.N., GALVANAUSKAS A., WINFUL H.G., TERRY F.L., FREEMAN M.J., POULAIN M., MAZÉ G., Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power, Optics Express 15(3), 2007: 865-871. https://doi.org/10.1364/OE.15.000865
- [23] YANG H., CHEN S., ZHAO S., YANG Y., Observation of the quasi-discrete supercontinuum at optical event horizon, Optics Communications 478, 2021: 126379. https://doi.org/10.1016/j.optcom.2020.126379
- [24] YU Y., ZHANG B., GAI X., ZHAI C., QI S., GUO W., YANG Z., WANG R., CHOI D.-Y., MADDEN S., LUTHER-DAVIES B., 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power, Optics Letters 40(6), 2015: 1081-1084. https://doi.org/10.1364/OL.40.001081
- [25] YULIN A.V., SKRYABIN D.V., RUSSELL P.S.J., Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion, Optics Letters 29(20), 2004: 2411-2413. https://doi.org/10.1364/OL.29.002411
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52ecbc40-0b53-4b00-ad93-8aecc3148a05