Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work the esterification of diethyl tartrate was studied. The research was focused on the enhancement of reversible reaction yield, which is accomplished by dewatering of the reaction mixture. The removal of water shifts the equilibrium towards the main product. Pervaporation was applied for this purpose, and results were compared to distillation. The advantages and limitations of both processes are discussed. The experimental part consists of dewatering of mixture after the reaction had reached the equilibrium, and was subsequently fed to the test rig equipped with a single zeolite membrane purchased from Pervatech B.V. Results show a significant conversion increase as a result of water removal by pervaporation. Compared to distillation no addition of organics is necessary to efficiently remove water above the azeotrope. Nevertheless, some limitations and issues which call for optimisation are pointed out. A simple numerical model is proposed to support design and sizing of the pervaporation system. Various modes of integrated system operation are also briefly discussed.
Czasopismo
Rocznik
Tom
Strony
121--131
Opis fizyczny
Bibliogr. 29 poz., il.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
- 1. Baig F.U., 2008. Pervaporation, In: Li N.N., Fane A.G., Winston Ho W.S., Matsuura T. (Eds.), Advanced Membrane Technology and Applications. John Wiley & Sons, 469-488. DOI: 10.1002/9780470276280.ch17.
- 2. Bowen T.C., Noble R.D., Falconer J.L., 2004. Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci., 245, 1-33. DOI: 10.1016/j.memsci.2004.06.059.
- 3. Cardona Alzate C.A., Sanchez Toro O.J., 2006. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy, 31, 2447-2459. DOI: 10.1016/j.energy.2005.10.020.
- 4. Cardona C.A., Sanchez O.J., 2007. Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol., 98, 2415-2457. DOI: 10.1016/j.biortech.2007.01.002.
- 5. Chapman P.D., Oliveira T., Livingston A.G., Li K., 2008. Membranes for the dehydration of solvents by pervaporation. J. Membr. Sci., 318, 5-37. DOI: 10.1016/j.memsci.2008.02.061.
- 6. De la Iglesia O., Mallada R., Menendez M., Coronas J., 2007. Continuous zeolite membrane reactor for esterification of ethanol and acetic acid. Chem. Eng. J., 131, 35-39. DOI: 10.1016/j.cej.2006.12.015.
- 7. Dhamaniya S., Jacob J., 2012. Synthesis and characterization of copolyesters based on tartaric acid derivatives. Polym. Bull., 68, 1287-1304. DOI: 10.1007/s00289-011-0606-9.
- 8. He S, Wei Y., Meng X., 2014. CN 103739592.
- 9. Kamiński W., Marszałek J., Ciołkowska A., 2008. Renewable energy source - Dehydrated ethanol. Chem. Eng. J., 135, 95-102. DOI: 10.1016/j.cej.2007.03.017.
- 10. Keurentjes J.T.F., Janssen G.H.R., Gorissen J.J., 1994. The esterification of tartaric acid with ethanol: Kinetics and shifting the equilibrium by means of pervaporation. Chem. Eng. Sci., 49, 4681-468. DOI: 10.1016/S0009-2509(05)80051-X.
- 11. Kim C.U., Lew W., Williams M.A., Liu H., Zhang L., Swaminathan S., Bischofberger N., Chen M.S., Mendel D.B., Tai C.Y., Laver W.G., Stevens R.C., 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc., 119, 681–690. DOI: 10.1021/ja963036t.
- 12. Kumar K.S., Satyanarayana S.V., 2011. Studies of a pervaporation membrane batch reactor. Asia-Pac. J. Chem. Eng., 6, 575-580. DOI: 10.1002/apj.431.
- 13. Kunnakorn D., Rirksomboon T., Siemanond K., Aungkavattana P., Kuanchertchoo N., Chuntanalerg P., Hemra K., Kulprathipanja S., James R.B., Wongkasemjit S., 2013. Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water-ethanol separation. Renew. Energ., 51, 310-316. DOI: 10.1016/j.renene.2012.09.055.
- 14. Li J., Ma Z., Zhou F., Huang L., 2013. Faming Zhuanli Shenqing. CN 103351372.
- 15. Li W., Tao Ch., Xiang L., Luo J., Peng Ch., 2014. CN 103664888.
- 16. Liu Y.-L., Yu C.-H., Lee K.-R., Lai J.-Y., 2007. Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes. J. Membr. Sci., 287, 230-236. DOI: 10.1016/j.memsci.2006.10.040.
- 17. Mathakiyaa I.A., Rakshita A.K., Iyerb D.B., Shahb A.K., 2004. Novel biodegradable polyamides based on tartaric acid: Preparation and properties. Int. J. Polym. Mater. 53, 405-418. DOI: 10.1080/00914030490429915.
- 18. Nemec D., van Gemert R., 2005. Performing Esterification reactions by combining heterogeneous catalysis and pervaporation in a batch process. Ind. Eng. Chem. Res., 44, 9718-9726. DOI: 10.1021/ie050283.
- 19. Pera-Titus M., 2008. Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system. Sep. Purif. Technol., 59, 141-150. DOI: 10.1016/j.seppur.2007.05.038.
- 20. Rathod A.P., Wasewar K.L., Kyoo Yoo C., 2014. Enhancement of esterification of propionic acid with isopropyl alcohol by pervaporation reactor. J. Chem., 2014, 1-4. DOI: 10.1155/2014/539341.
- 21. Sanz M.T., Gmehling J., 2006. Esterification of acetic acid with isopropanol coupled with pervaporation. Part II.
- 22. Study of a pervaporation reactor. Chem. Eng. J., 123, 9-14. DOI: 10.1016/j.cej.2006.06.011.
- 23. Sert E., Atalay F.S., 2014. N-Butyl acrylate production by esterification of acrylic acid with n-butanol combined with pervaporation. Chem. Eng. Process., 81, 41-47. DOI: 10.1016/j.cep.2014.04.010.
- 24. Shao P., Huang R.Y.M., 2007. Polymeric membrane pervaporation. J. Membr. Sci., 287, 162-179. DOI: 10.1016/j.memsci.2006.10.043.
- 25. Takahashi M., Murata Y., Hakamata Y., Suzuki K., Sengoku T., Yoda H., 2012. First total synthesis and absolute stereochemical assignment of vittarilide-A, an antioxidant extractive component isolated from Vittaria angusteelongata Hayata. Tetrahedron, 38, 7997–8002. DOI: 10.1016/j.tet.2012.06.105.
- 26. van Veen H.M., Rietkerk M.D.A., Shanahan D.P., van Tuel M.M.A., Kreiter R., Castricum H.L., ten Elshof J.E., Vente J.F., 2011. Pushing membrane stability boundaries with HybSi® pervaporation membranes. J. Membr. Sci., 380, 124-131. DOI: 10.1016/j.memsci.2011.06.040.
- 27. Wee S., Tye C., Bhatia S., 2008. Membrane separation process - Pervaporation through zeolite membrane. Sep. Purif. Technol., 63, 500-516. DOI: 10.1016/j.seppur.2008.07.010.
- 28. Wynn N., 2000. Dehydration with silica pervaporation membranes. Sulzer Technical Review, 3, 10-12.
- 29. Yang Ch., Qiang J., Wei H., 2014. CN 103804355 A.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52ebdc21-1146-4db8-9c71-3f90f8c13e37