Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research aims to address the limitations of conventional geopolymerization techniques in developing an environmentally friendly mechanochemically activated geopolymeric (MG) grout. The study primarily focuses on assessing the feasibility of using recycled waste brick powder (WBP) as a substitute for traditional industrial waste materials, such as ground granulated blast furnace slag (GGBS). A comparative analysis with the conventionally activated geopolymer (CG) grout was conducted to establish benchmarks for evaluating activation mechanisms. Key performance indicators, including mini-slump flow, setting time, unconfined compressive strength, density, and stress–strain behavior, were evaluated. Microstructural properties were analyzed using X-ray diffraction and scanning electron microscopy. Experimental results revealed that incorporating WBP as a partial replacement for GGBS significantly influenced both fresh and mechanical properties of the geopolymer grout. Substituting 15–45% of GGBS with WBP increased the slump flow of MG from 8.5 to 10 cm, reduced the final setting time from 235 to 90 min, and enhanced the compressive strength from 4.3 to 14 for 90 days, highlighting the potential of WBP as an effective supplementary material in sustainable grout formulations. The mechanochemical activation process further improved the performance, reducing the mini-slump flow by 10–27% and the final setting time by 9–25% and increasing the compressive strength by 7–30% compared to conventional activation methods. Microstructural analysis indicated that the pure WBP-based geopolymer grout exhibited a loose and fragmented morphology. However, the substitution of 15–45% GGBS for WBP resulted in more compact and homogeneous microstructures, with the MG grout showing greater density and compaction than CG. These findings demonstrate the efficacy of MGs incorporating WBP as a sustainable and high-performance alternative for grouting applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
18--41
Opis fizyczny
Bibliogr. 97 poz., rys., tab.
Twórcy
autor
- Department of Civil Engineering, Muğla Sıtkı Koçman University Muğla, Turkey
autor
- Department of Civil Engineering, Muğla Sıtkı Koçman University Muğla, Turkey North Refineries Company Baiji, Iraq
autor
- Department of Civil Engineering, Dijlah University College Baghdad, Iraq
- Projects Department, Al Ramadi Municipality Anbar Province, Iraq
Bibliografia
- [1] Amer, A.A., El-Hoseny, S., Properties and performance of metakaolin pozzolanic cement pastes, J. Therm. Anal. Calorim., 2017, 129: 33–44. doi:10.1007/s10973-017-6087-9
- [2] Rios, S., Ramos, C., Viana da Fonseca, A., Cruz, N., Rodrigues, C., Mechanical and durability properties of a soil stabilised with an alkali-activated cement, Eur. J. Environ. Civ. Eng., 2019, 23: 245–267. doi:10.1080/19648189.2016.1275987
- [3] Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., Van Deventer, J.S.J., Geopolymer technology: The current state of the art, J. Mater. Sci., 2007, 42: 2917–2933. doi:10.1007/ s10853-006-0637-z
- [4] Lee, W.K.W., Van Deventer, J.S.J., The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements, Cem. Concr. Res., 2002, 32: 577–584
- [5] Zhang, M., Guo, H., El-Korchi, T., Zhang, G., Tao, M., Experimental feasibility study of geopolymer as the next-generation soil stabilizer, Constr. Build. Mater., 2013, 47: 1468–1478
- [6] Yaghoubi, M., Arulrajah, A., Miri Disfani, M., Horpibulsuk, S., Leong, M., Compressibility and strength development of geopolymer stabilized columns cured under stress, Soils Found., 2020, 60: 1241–1250. doi:10.1016/j.sandf.2020.07.005
- [7] Palomo, A., Blanco-Varela, M.T., Granizo, M.L., Puertas, F., Vazquez, T., Grutzeck, M.W., Chemical stability of cementitious materials based on metakaolin, Cem. Concr. Res., 1999, 29: 997–1004
- [8] Cheng, T.W., Chiu, J.P., Fire-resistant geopolymer produced by granulated blast furnace slag, Miner. Eng., 2003, 16: 205–210
- [9] Zhang, H.Y., Liu, J.C., Wu, B., Mechanical properties and reaction mechanism of one-part geopolymer mortars, Constr. Build. Mater., 2021, 273: 121973. doi:10.1016/j.conbuildmat.2020.121973
- [10] Lee, W.K.W., Van Deventer, J.S.J., Structural reorganisation of class F fly ash in alkaline silicate solutions, Colloids Surf. A: Physicochem. Eng. Asp., 2002, 211: 49–66
- [11] Lee, W.K.W., Van Deventer, J.S.J., Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates, Langmuir, 2003, 19: 8726–8734. doi:10.1021/la026127e
- [12] Nematollahi, B., Sanjayan, J., Shaikh, F.U.A., Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate, Ceram. Int., 2015, 41: 5696–5704
- [13] Abbas, I.S., Abed, M.H., Canakci, H., Development and characterization of eco-and user-friendly grout production via mechanochemical activation of geopolymer, J. Build. Eng., 2022, 63: 105336
- [14] Hamid Abed, M., Abbas, I.S., Canakci, H., Influence of mechanochemical activation on the rheological, fresh, and mechanical properties of one-part geopolymer grout, Adv. Cem. Res., 2022, 35: 1–38
- [15] Matalkah, F., Xu, L., Wu, W., Soroushian, P., Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement, Mater. Struct., 2017, 50: 1–12. doi:10.1617/s11527-016-0968-4
- [16] Guo, X., Xiang, D., Duan, G., Mou, P., A review of mechanochemistry applications in waste management, Waste Manag.., 2010, 30: 4–10. doi: 10.1016/j. wasman.2009.08.017
- [17] Hosseini, S., Brake, N.A., Nikookar, M., Günaydin-Sen, Ö., Snyder, H.A., Mechanochemically activated bottom ash-fly ash geopolymer, Cem. Concr. Compos., 2021, 118: 103976. doi:10.1016/j.cemconcomp.2021. 103976
- [18] Gupta, R., Bhardwaj, P., Mishra, D., Mudgal, M., Chouhan, R.K., Prasad, M., et al., Evolution of advanced geopolymeric cementitious material via a novel process, Adv. Cem. Res., 2017, 29: 125–134. doi:10.1680/jadcr.16.00113
- [19] Mudgal, M., Chouhan, R.K., Kushwah, S., Srivastava, A.K., Enhancing reactivity and properties of fly-ash-based solid-form geopolymer via ballmilling, Emerg. Mater. Res., 2019, 9: 2–9
- [20] Kumar, S., Kumar, R., Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer, Ceram. Int., 2011, 37: 533–541
- [21] Migunthanna, J., Rajeev, P., Sanjayan, J., Investigation of waste clay brick as partial replacement in geopolymer binder, Constr. Build. Mater., 2023, 365: 130107. doi:10.1016/j.conbuildmat.2022.130107
- [22] Sharmin, S., Sarker, P.K., Biswas, W.K., Abousnina, R.M., Javed, U., Characterization of waste clay brick powder and its effect on the mechanical properties and microstructure of geopolymer mortar, Constr. Build. Mater., 2024, 412: 134848. doi:10.1016/j.conbuildmat.2023.134848
- [23] Wong, C.L., Mo, K.H., Alengaram, U.J., Yap, S.P., Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder, J. Build. Eng., 2020, 32: 101655. doi:10.1016/j.jobe.2020.101655
- [24] Ye, T., Xiao, J., Duan, Z., Li, S., Geopolymers made of recycled brick and concrete powder – A critical review, Constr. Build. Mater., 2022, 330: 127232. doi:10.1016/j.conbuildmat.2022.127232
- [25] Wang, B., Yan, L., Fu, Q., Kasal, B., A comprehensive review on recycled aggregate and recycled aggregate concrete, Resour. Conserv. Recycl., 2021, 171: 105565. doi:10.1016/j.resconrec.2021.105565
- [26] Tang, Q., Ma, Z., Wu, H., Wang, W., The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review, Cem. Concr. Compos., 2020, 114: 103807. doi:10.1016/ j.cemconcomp.2020.103807
- [27] Abadel, A.A., Alghamdi, H., Effect of high volume tile ceramic wastes on resistance of geopolymer mortars to abrasion and freezing-thawing cycles: Experimental and deep learning modelling, Ceram. Int., 2023, 49: 15065–15081. doi:10.1016/j.ceramint.2023.01.089
- [28] Albidah, A., Abadel, A., Alrshoudi, F., Altheeb, A., Abbas, H., Al-Salloum, Y., Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures, J. Mater. Res. Technol., 2020, 9: 10732–10745. doi:10.1016/j.jmrt.2020.07.092
- [29] Naceri, A., Hamina, M.C., Use of waste brick as a partial replacement of cement in mortar, Waste Manag., 2009, 29: 2378–2384. doi:10.1016/j.wasman. 2009.03.026
- [30] Figiela, B., Brudny, K., Lin, W.T., Korniejenko, K., Investigation of mechanical properties and microstructure of construction-and demolition-wastebased geopolymers, J. Compos. Sci., 2022, 6: 191. doi:10.3390/jcs6070191
- [31] Alghamdi, H., Abadel, A.A., Khawaji, M., Alamri, M., Alabdulkarim, A., Strength performance and microstructures of alkali-activated metakaolin and GGBFS-based mortars: role of waste red brick powder incorporation, Minerals, 2023, 13: 848.
- [32] Abadel, A.A., Alghamdi, H., Alharbi, Y.R., Alamri, M., Khawaji, M., Abdulaziz, M.A.M., et al., Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud, Materials (Basel), 2023, 16: 1551
- [33] Rakhimova, N.R., Rakhimov, R.Z., Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste, Mater. Des., 2015, 85: 324–331. doi:10.1016/j.matdes.2015.06.182
- [34] Zhu, L., Zhu, Z., Reuse of clay brick waste in mortar and concrete, Adv. Mater. Sci. Eng.., 2020, 2020: 6326178. doi:10.1155/2020/6326178
- [35] Xiao, J., Ma, Z., Sui, T., Akbarnezhad, A., Duan, Z., Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste, J. Clean. Prod., 2018, 188: 720–731. doi:10.1016/j.jclepro.2018.03.277
- [36] Mahmoodi, O., Siad, H., Lachemi, M., Sahmaran, M., Synthesis and optimization of binary systems of brick and concrete wastes geopolymers at ambient environment, Constr. Build. Mater., 2021, 276: 122217. doi:10.1016/j.conbuildmat.2020.122217
- [37] Marjanovic, N., Komljenovic, M., Bascarevic, Z., Nikolić, V., Petrovic, R., Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends, Ceram. Int., 2015, 41: 1421–1435. doi:10.1016/j.ceramint.2014.09.075
- [38] Palacios, M., Gismera, S., Alonso, M.M., d’Espinose de Lacaillerie, J.B., Lothenbach, B., Favier, A., et al., Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties, Cem. Concr. Res., 2021, 140: 106302. doi:10.1016/j. cemconres.2020.106302
- [39] Lu, C., Zhang, Z., Shi, C., Li, N., Jiao, D., Yuan, Q., Rheology of alkali-activated materials: A review, Cem. Concr. Compos., 2021, 121: 104061. doi:10.1016/ j.cemconcomp.2021.104061
- [40] Ye, H., Radlińska, A., Shrinkage mitigation strategies in alkali-activated slag, Cem. Concr. Res., 2017, 101: 131–143. doi:10.1016/j.cemconres.2017.08.025
- [41] Ye, H., Radlińska, A., Shrinkage mechanisms of alkali-activated slag, Cem. Concr. Res., 2016, 88: 126–135. doi:10.1016/j.cemconres.2016.07.001
- [42] Hojati, M., Radlin, A., Radlińska, A., Shrinkage and strength development of alkali-activated fly ash- slag binary cements, Constr. Build. Mater., 2017, 150: 808–816. doi:10.1016/j.conbuildmat.2017.06.040
- [43] Zawrah, M.F., Gado, R.A., Feltin, N., Ducourtieux, S., Devoille, L., Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast¬furnace slag for geopolymer production, Process. Saf. Environ. Prot., 2016, 103: 237–251. doi:10.1016/j.psep. 2016.08.001
- [44] Fort, J., Novotny, R., Vejmelkova, E., Trnik, A., Rovnaníková, P., Keppert, M., et al., Characterization of geopolymers prepared using powdered brick, J. Mater. Res. Technol., 2019, 8: 6253–6261. doi:10.1016/j.jmrt.2019.10.019
- [45] Abed, F.H., Zareei, S.A., Kurdi, N.H., Emami, A., Enhancing geopolymer binder reactivity and perfor¬mance via mechanochemical activation: A compre¬hensive study of rheological, mechanical, and micro¬structural properties, Constr. Build. Mater., 2024, 430: 136456. doi:10.1016/j.conbuildmat.2024.136456
- [46] Hamid Abed, M., Sabbar Abbas, I., Hamed, M., Canakci, H., Rheological, fresh, and mechanical prop¬erties of mechanochemically activated geopolymer grout: A comparative study with conventionally acti¬vated geopolymer grout, Constr. Build. Mater., 2022, 322: 126338. doi:10.1016/j.conbuildmat.2022.126338
- [47] Raghuraman, P., Raman, R.R., Pitchumani, B., Studies in fine grinding in an attritor mill, In: Developments in mineral processing, Elsevier, 2000, pp. C4–C94
- [48] Ilcan, H., Sahin, O., Kul, A., Yildirim, G., Sahmaran, M., Rheological properties and compres-sive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing, Constr. Build. Mater., 2022, 328: 127114
- [49] Mahmoodi, O., Siad, H., Lachemi, M., Dadsetan, S., Sahmaran, M., Optimization of brick waste-based geopolymer binders at ambient temperature and pre-targeted chemical parameters, J. Clean. Prod., 2020, 268: 122285. doi:10.1016/j.jclepro.2020. 122285
- [50] Kantro, D.L., Influence of water-reducing admixtures on properties of cement paste – a miniature slump test, Cem. Concr. Aggreg., 1980, 2: 95–102
- [51] Güllü, H., Ali Agha, A., The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting, Constr. Build. Mater., 2021, 274: 122091. doi:10.1016/j. conbuildmat.2020.122091
- [52] ASTM, C. Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International, West Conshohocken, PA, 2008, C191-08
- [53] Astm, C. 942. Standard test method for compressive strengths of grouts for preplaced-aggregate concrete in the laboratory, Annual Book of ASTM Standards, 2008.
- [54] ASTM, A. Standard test method of unconfined compressive strength of intact rock core specimens, ASTM Publication, 1986.
- [55] Amini, O., Ghasemi, M., Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil, Constr. Build. Mater., 2019, 223: 409–420
- [56] Baalamurugan, J., Ganesh Kumar, V., Stalin Dhas, T., Taran, S., Nalini, S., Karthick, V., et al., Utilization of induction furnace steel slag based iron oxide nano¬composites for antibacterial studies, SN Appl. Sci., 2021, 3: 1–8. doi:10.1007/s42452-021-04299-9
- [57] Hwang, C.L., Damtie Yehualaw, M., Vo, D.H., Huynh, T.P., Development of high-strength alkali- activated pastes containing high volumes of waste brick and ceramic powders, Constr. Build. Mater., 2019, 218: 519–529. doi:10.1016/j.conbuildmat.2019. 05.143
- [58] Hamid Abed, M., Hamid Abed, F., Alireza Zareei, S., Sabbar Abbas, I., Canakci, H., Kurdi, N.H., et al., Experimental feasibility study of using eco- and user-friendly mechanochemically activated slag/ fly ash geopolymer for soil stabilization, Clean. Mater., 2024, 11: 100226. doi:10.1016/j.clema.2024. 100226
- [59] Chen, M.Z., Lin, J.T., Wu, S.P., Liu, C.H., Utilization of recycled brick powder as alternative filler in asphalt mixture, Constr. Build. Mater., 2011, 25: 1532–1536. doi:10.1016/j.conbuildmat.2010.08.005
- [60] Wang, Y., Wang, M., Wang, H., Dun, Z., Ren, L., Experimental research on application of waste con¬crete powder–waste brick powder–cement grout for foundation reinforcement in mining goaf, Materials (Basel), 2023, 16: 6075. doi:10.3390/ma16186075
- [61] Ahmed, J.K., Atmaca, N., Khoshnaw, G.J., Building a sustainable future: An experimental study on recycled brick waste powder in engineered geopolymer composites, Case Stud. Constr. Mater., 2024, 20: e02863. doi:10.1016/j.cscm.2024.e02863
- [62] ASTM International. ASTM C1437-15 Standard test method for flow of hydraulic cement mortar, ASTM International, West Conshohocken, PA, USA, 2015.
- [63] Hamid Abed, M., Hamid Abed, F., Alireza Zareei, S., Sabbar Abbas, I., Canakci, H., Kurdi, N.H., et al., Experimental feasibility study of eco- and userfriendly mechanochemically activated slag/fly ash geopolymer for soil stabilization, Clean. Mater., 2024, 11: 100226. doi: 10.1016/j.clema.2024.100226
- [64] Hamid Abed, M., Hamid Abed, F., Zareei, S.A., Abbas, I.S., Canakci, H., Kurdi, N.H., Mechanical and durability performance of eco-friendly geopolymer- stabilized soil, Proc. Inst. Civ. Eng. Gr. Improv., 2024, 1–17. doi: 10.1680/jgrim.23.00037
- [65] Abed, M.H., Abbas, I.S., Development and assessment of eco- and user-friendly geopolymeric stabilizers for sustainable soil improvement, Clean. Waste Syst., 2024, 9: 100170. doi:10.1016/j.clwas.2024.100170
- [66] Zhang, J., Li, S., Li, Z., Zhang, Q., Li, H., Du, J., et al., Properties of fresh and hardened geopolymer-based grouts, Ceram. Silik., 2019, 63: 164–173. doi:10.13168/ cs.2019.0008
- [67] Abou-Zeid, M., Fowler, D.W., Nawy, E.G., Allen, J.H., Halvorsen, G.T., Poston, R.W., et al., Control of cracking in concrete structures, Rep. ACI Comm.., 2001, 224: 12–16
- [68] Samantasinghar, S., Singh, S.P., Fresh and hardened properties of fly ash–slag blended geopolymer paste and mortar, Int. J. Concr. Struct. Mater., 2019, 13: 1–12. doi:10.1186/s40069-019-0360-1
- [69] Nath, P., Sarker, P.K., Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition, Constr. Build. Mater., 2014, 66: 163–171
- [70] Kumar, S., Kumar, R., Mehrotra, S.P., Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J. Mater. Sci., 2010, 45: 607–615. doi:10.1007/s10853- 009-3934-5
- [71] Kato, K., Xin, Y., Hitomi, T., Shirai, T., Surface mod- ification of fly ash by mechano-chemical treatment, Ceram. Int., 2019, 45: 849–853. doi:10.1016/j.ceramint. 2018.09.254
- [72] Li, H., Xu, D., Feng, S., Shang, B., Microstructure and performance of fly ash micro-beads in cementitious material system, Constr. Build. Mater., 2014, 52: 422–427. doi:10.1016/j.conbuildmat.2013.11.040
- [73] Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation, Constr. Build. Mater., 2014, 57: 151–162. doi:10.1016/j.conbuildmat.2014.01.095
- [74] Tho-In, T., Sata, V., Boonserm, K., Chindaprasirt, P., Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash, J. Clean. Prod., 2016, 172: 2892–2898. doi:10.1016/j. jclepro.2017.11.125
- [75] Liang, G., Zhu, H., Zhang, Z., Wu, Q., Du, J., Investigation of the waterproof property of alkali- activated metakaolin geopolymer added with rice husk ash, J. Clean. Prod., 2019, 230: 603–612. doi:10. 1016/j.jclepro.2019.05.111
- [76] Athira, V.S., Bahurudeen, A., Saljas, M., Jayachandran, K., Influence of different curing methods on mechanical and durability properties of alkali activated binders, Constr. Build. Mater., 2021, 299: 123963. doi:10.1016/j.conbuildmat.2021. 123963
- [77] Fořt, J., Mildner, M., Keppert, M., Pommer, V., Černý, R., Experimental and environmental analysis of high-strength geopolymer based on waste bricks and blast furnace slag, Polymers (Basel), 2023, 15: 3092. doi:10.3390/polym15143092
- [78] Nath, S.K., Kumar, S., Influence of iron making slags on strength and microstructure of fly ash geopolymer, Constr. Build. Mater., 2013, 38: 924–930. doi:10.1016/j.conbuildmat.2012.09.070
- [79] Nath, S.K., Kumar, S., Influence of granulated silico- manganese slag on compressive strength and micro- structure of ambient cured alkali-activated fly ash binder, Waste Biomass Valoriz., 2019, 10: 2045–2055. doi:10.1007/s12649-018-0213-1
- [80] Ma, Y., Hu, J., Ye, G., The pore structure and permeability of alkali activated fly ash, Fuel, 2013, 104: 771–780. doi:10.1016/j.fuel.2012.05.034
- [81] Zheng, L., Wang, W., Shi, Y., The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer, Chemosphere, 2010, 79: 665–671. doi:10.1016/j.chemosphere.2010. 02.018
- [82] Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J., Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+, J. Hazard. Mater., 2008, 157: 587–598. doi:10. 1016/j.jhazmat.2008.01.053
- [83] Izquierdo, M., Querol, X., Davidovits, J., Antenucci, D., Nugteren, H., Fernández-Pereira, C., Coal fly ash-slag- based geopolymers: Microstructure and metal leaching, J. Hazard. Mater., 2009, 166: 561–566. doi:10.1016/j.jhazmat.2008.11.063
- [84] Provis, J.L., Myers, R.J., White, C.E., Rose, V., Van Deventer, J.S.J., X-ray microtomography shows pore structure and tortuosity in alkali-activated binders, Cem. Concr. Res., 2012, 42: 855–864. doi:10.1016/j. cemconres.2012.03.004
- [85] Hamid, M., Abbas, I.S., Canakci, H., Effect of glass powder on the rheological and mechanical properties of slag-based mechanochemical activation geo- polymer grout, Eur. J. Environ. Civ. Eng., 2022, 27: 1–25. doi: 10.1080/19648189.2022.2145374
- [86] Wang, W., Wu, H., Ma, Z., Wu, R., Using eco-friendly recycled powder from CDW to prepare strain hard- ening cementitious composites (SHCC) and proper- ties determination, Materials (Basel), 2020, 13: 1143. doi:10.3390/ma13051143
- [87] Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S., Van Deventer, J.S.J., Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos., 2014, 45: 125–135. doi: 10.1016/j.cemconcomp.2013. 09.006
- [88] Gupta, R., Bhardwaj, P., Mishra, D., Prasad, M., Amritphale, S.S., Formulation of mechanochemically evolved fly ash based hybrid inorganic–organic geopolymers with multilevel characterization, J. Inorg. Organomet. Polym. Mater., 2017, 27: 385–398. doi:10.1007/s10904-016-0461-0
- [89] Gupta, R., Bhardwaj, P., Deshmukh, K., Mishra, D., Prasad, M., Amritphale, S.S., Development and characterization of inorganic-organic (Si-O-Al) hybrid geopolymeric precursors via solid state method, Silicon, 2019, 11: 221–232
- [90] Navrátilová, E., Rovnaníková, P., Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars, Constr. Build. Mater., 2016, 120: 530–539. doi:10.1016/j.conbuildmat.2016.05.062
- [91] U.S. Epa, National primary drinking water standards, Off. Water, United States Environ. Prot. Agency, Washington, DC, 2003
- [92] Wartman, J., Grubb, D.G., Nasim, A.S.M., Select engineering characteristics of crushed glass, J. Mater. Civ. Eng., 2004, 16: 526–539
- [93] Cheng, K.Y., Bishop, P., Metals distribution in solidified/stabilized waste forms after leaching, Hazard. Waste Hazard. Mater., 1992, 9: 163–171
- [94] Napia, C., Sinsiri, T., Jaturapitakkul, C., Chindaprasirt, P., Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder, Waste Manag.., 2012, 32: 1459–1467
- [95] Peralta, G.L., Ballesteros, F., Cepeda, M., Treatment and disposal of heavy metal waste using cementitious solidification, In: PACIFIC BASIN, Conference On Hazardous Waste, 1992
- [96] Erdem, E., Karapinar, N., Donat, R., The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 2004, 280: 309–314
- [97] Abed, M.H., Abbas, I.S., Mohmmad, S.H., Saygili, A., Agha, A.A., Performance of soils stabilized with ecofriendly mechanochemical geopolymeric activators, Geotech. Geol. Eng., 2025, 43: 117. doi: 10.1007/s10706- 025-03073-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52eb7175-f3e4-45cb-bc1b-b7852a083979
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.