PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrared image filtering applied to the restoration of the convective heat transfer coefficient distribution in coiled tubes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Advanced Infrared Technology and Applications - AITA 2013 (12 ; 10-13.09.2013 ; Turin, Italy)
Języki publikacji
EN
Abstrakty
EN
This paper presents and assesses an inverse heat conduction problem (IHCP) solution procedure which was developed to determine the local convective heat transfer coefficient along the circumferential coordinate at the inner wall of a coiled pipe by applying the filtering technique approach to infrared temperature maps acquired on the outer tube’s wall. The data-processing procedure filters out the unwanted noise from the raw temperature data to enable the direct calculation of its Laplacian which is embedded in the formulation of the inverse heat conduction problem. The presented technique is experimentally verified using data that were acquired in the laminar flow regime that is frequently found in coiled-tube heat-exchanger applications. The estimated convective heat transfer coefficient distributions are substantially consistent with the available numerical results in the scientific literature.
Twórcy
autor
  • Department of Industrial Engineering, University of Parma, 181/A Parco Area delle Scienze, I-43124 Parma, Italy 2SITEIA
autor
  • Department of Industrial Engineering, University of Parma, 181/A Parco Area delle Scienze, I-43124 Parma, Italy
  • Department of Industrial Engineering, University of Parma, 181/A Parco Area delle Scienze, I-43124 Parma, Italy
  • SITEIA.PARMA Interdepartmental Centre, University of Parma, 181/A Parco Area delle Scienze, I-43124 Parma, Italy
autor
  • Department of Industrial Engineering, University of Parma, 181/A Parco Area delle Scienze, I-43124 Parma, Italy
  • SITEIA.PARMA Interdepartmental Centre, University of Parma, 181/A Parco Area delle Scienze, I-43124 Parma, Italy
Bibliografia
  • 1. S. Rainieri and G. Pagliarini, “Data filtering applied to infrared thermographic measurements intended for the estimation of local heat transfer coefficient”, Exp. Therm. Fluid Sci. 26, 109-114 (2002).
  • 2. S. Rainieri, F. Bozzoli, and G. Pagliarini, “Wiener filtering technique applied to thermographic data reduction intended for the estimation of plate fins performance”, Exp. Therm. Fluid Sci. 28, 179-18326 (2004).
  • 3. S. Rainieri, F. Bozzoli, and G. Pagliarini, “Effect of a hydrophobic coating on the local heat transfer coefficient in forced convection under wet conditions”, Exp. Heat Transfer 22, 163-77 (2009).
  • 4. A. Rogalski, “Optical detectors for focal plane arrays” , Opto-Electron. Rev. 12, 221-245 (2004).
  • 5. A. Rogalski. “Recent progress in infrared detector technologies”, Infrared Phys. Technol. 54, 136-154 (2011).
  • 6. S. Rainieri and G. Pagliarini, “Data processing technique applied to the calibration of a high performance FPA infrared camera”, Infrared Phys. Technol. 43, 345-351 (2002).
  • 7. S. Rainieri, F. Bozzoli, and G. Pagliarini, “Characterization of an uncooled infrared thermographic system suitable for the solution of the 2-D inverse heat conduction problem”, Exp. Therm. Fluid Sci. 32, 1492-1498 (2008).
  • 8. H.R.B. Orlande, O. Fudym, and D. Maillet, Thermal Measurements and Inverse Techniques, ed. by CRC Press, Taylor & Francis Group, Boca Raton, 2011.
  • 9. M.N. Özisik and H.R.B. Orlande, Inverse Heat Transfer, ed. by Taylor & Francis, New York, 2000.
  • 10. D. Delpueyo, X. Balandraud, and M. Grediac, “Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter”, Infrared Phys. Technol. 60,312-322 (2013).
  • 11. D.A. Murio and D. Hinestroza, “The space marching solution of the inverse heat conduction problem and the identification of the initial temperature”, Computers Math. Applic. 25, 55-63 (1993).
  • 12. N. Renault, S. Andre, D. Maillet, and C. Cunat, ”A two-step regularized inverse solution for 2-D heat source reconstruction”, Int. J. Therm. Sci. 47, 834-847 (2008).
  • 13. F. Bozzoli, G. Pagliarini, and S. Rainieri, “Experimental validation of the filtering technique approach applied to the restoration of the heat source field”, Exp. Therm. Fluid Sci. 44, 858-867 (2013).
  • 14. F. Bozzoli and S. Rainieri, “Comparative application of CGM and Wiener filtering techniques for the estimation of heat flux distribution”, Inverse Prohl. Sci. En. 19, 551-573 (2011).
  • 15. C. Ibarra-Castanedo, D. Gonzalez, M. Klein, M. Pilla, S. Vallerand, and X. Maldague, “Infrared image processing and data analysis”, Infrared Phys. Techn. 46, 75-83 (2004).
  • 16. G.M. Carlomagno and G. Cardone, “Infrared thermography for convective heat transfer measurements”, Exp. Fluids 49, 1187- 1218 (2010).
  • 17. S. Rainieri, F. Bozzoli, and G. Pagliarini, “Experimental investigation on the convective heat transfer in straight and coiled corrugated tubes for highly viscous fluids: Preliminary results”, Int. J. Heat Mass Tran. 55, 498-504 (2012).
  • 18. A. Zachar,”Investigation of natural convection induced outer side heat transfer rate of coiled-tubc heat exchangers” ”, Int. J Heat Mass Tran. 55. 7892-7901 (2012).
  • 19. S. Rainieri, F. Bozzoli, L. Cattani, and G. Pagliarini, “Compound convective heat transfer enhancement in helically coiled wall corrugated tubes”, Int. J. Heat Mass Tran. 59, 353-362 (2013).
  • 20. F. Bozzoli, L. Cattani, S. Rainieri, F.S. Viloche Bazan, and L.S. Borges, “Estimation of the local heat transfer coefficient in the laminar flow regime in coiled tubes by the Tikhonov regularization method”, Int. J. Heat Mass Tran. 72, 352-361 (2014).
  • 21. J.S. Jayakumar, S.M. Mahajani, J.C. Mandal, K.N. Iyer, and P.K. Vijayan, “CFD analysis of single-phase flows inside helically coiled tubes”, Computer and Chemical Engineering 34, 430-446 (2010).
  • 22. S. Rainieri, F. Bozzoli, L. Schiavi, and G. Pagliarini, “Numerical analysis of convective heat transfer enhancement in swirl tubes”, Int. J. Numer. Methods H. 21, 559-571 (2011).
  • 23. S.A. Berger, L. Talbot, and L.S. Yao, “Flow in curved pipes”, Annu. Rev. Fluid Mech. 15,461-512 (1983).
  • 24. G. Yang, F. Dong, and M.A. Ebadian, “Laminar forced convection in a helicoidal pipe with finite pitch”, Int. J. Heat Mass Tran. 38, 853-862 (1995).
  • 25. F.P. Incropera and D. Dewitt, Fundamentals o f Heat and Mass Transfer, John Wiley & Sons Inc., New York, 2006.
  • 26. V. A. Morozov, Methods fo r Solving Incorrectly Posed Problems, ed. by Springer-Verlag, New York, 1984.
  • 27. Y. Matsevity and A.V. Moultanovsky, "An iterative filter for solution of the inverse heat conduction problems”, J. Eng. Phys. 35, Consultants Bureau, New York, London, 1979.
  • 28. F. Bozzoli, G. Pagliarini, S. Rainieri, and L. Schiavi, “Estimation of soil and grout thermal properties through aTSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data”. Energy 36, 839-846 (2011).
  • 29. S. Rainieri, F. Bozzoli, and G. Pagliarini, “Modelling approaches applied to the thermal response test: A critical review of the literature”, HVAC&R RESEARCH 17, 977-990 (2012).
  • 30. F. Bozzoli, L. Cattani, S. Rainieri, and G. Pagliarini, “Estimation of local heat transfer coefficient in coiled tubes under inverse heat conduction problem approach”, Exp. Therm. Fluid Sci. 59, 246-251 (2014).
  • 31. T. Astarita and G.M. Carlomagno, Infrared Thermography for Thermo-Fluid-Dynamics, Springer, Berlin, 2012.
  • 32. S. Rainieri, F. Bozzoli, and G. Pagliarini, “Characterization of an uncooled infrared thermographic system suitable for the solution of the 2-D inverse heat conduction problem”, Exp. Therm. Fluid Sci. 32, 1492-1498 (2008).
  • 33. J.P. Holman, Experimental Methods fo r Engineers-7/E, McGraw-Hill, New York, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52e88cff-47fc-4816-9fc8-1f6c6aad20d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.