PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nanoplatelet‑reinforced face‑sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies nonlinear vibration analysis of a graphene nanoplatelets’ composite sandwich. The core and two face-sheets of composite sandwich plate are fabricated from a honeycomb material and graphene nanoplatelet (GNP) reinforcements, respectively. Displacement field of sandwich plate is developed based on first-order shear deformation theory. Geometric nonlinearity is accounted in the constitutive relations based on von-Karman assumptions. After derivation of the governing partial differential motion equations through Hamilton’s principle, Galerkin’s approach is used to reduce them into a nonlinear equation of motion in terms of transverse defection. The nonlinear frequency is found based on linear frequency and initial conditions, analytically. The nonlinear-to-linear frequency ratio is computed based on significant input parameters of honeycomb structure and graphene nanoplatelets such as thickness-to-length and thickness-to-height ratios, angle of honeycomb, various distribution, weigh fraction and geometric characteristics of graphene nanoplatelets. Before presentation of full numerical results, the comprehensive comparative study is presented for verifcation of the derivation and solution method.
Rocznik
Strony
art. no. e56, 2023
Opis fizyczny
Bibliogr. 76 poz., rys., tab., wykr.
Twórcy
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Bibliografia
  • 1. Wang ZX, Shen HS. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Compos Struct. 2011;93(10):2521-32.
  • 2. Rezaiee-Pajand M, Arabi E, Masoodi AR. Nonlinear analysis of FG-sandwich plates and shells. Aerosp Sci Technol. 2019;87:178-89.
  • 3. Moita JS, Araújo AL, Franco Correia VM, Mota Soares CM, Mota Soares CA. Buckling and geometrically nonlinear analysis of sandwich structures. Int J Mech Sci. 2015;92:154-61.
  • 4. Nayak AK, Moy SSJ, Shenoi RA. Free vibration analysis of composite sandwich plates based on Reddy’s higher-order theory. Compos B Eng. 2002;33(7):505-19.
  • 5. Moita JS, Araújo AL, Mota Soares CM, Mota Soares CA, Herskovits J. Geometrically nonlinear analysis of sandwich structures. Compos Struct. 2016;156:135-44.
  • 6. Dau F, Polit O, Touratier M. C1 plate and shell finite elements for geometrically nonlinear analysis of multilayered structures. Comput Struct. 2006;84(19-20):1264-74.
  • 7. Chandrashekhar M, Ganguli R. Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties. Int J Mech Sci. 2010;52(7):874-91.
  • 8. Nguyen-Van H, Nguyen-Hoai N, Chau-Dinh T, Nguyen-Thoic T. Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse-mesh accuracy. Compos Struct. 2014;112:327-38.
  • 9. Zhang YX, Kim KS. Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements. Compos Struct. 2006;72(3):301-10.
  • 10. Zippo A, Ferrari G, Amabili M, Barbieri M, Pellicano F. Active vibration control of a composite sandwich plate. Compos Struct. 2015;128:100-14.
  • 11. Reinaldo B, Jasmin G, Romanoff JJ. A homogenization method for geometric nonlinear analysis of sandwich structures with initial imperfections. Int J Solids Struct. 2016;87:194-205.
  • 12. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tool Manufact. 2017;122:55-65.
  • 13. Ganapathi M, Patel BP, Makhecha DP. Nonlinear dynamic analysis of thick composite/sandwich laminates using an accurate higher-order theory. Compos B Eng. 2004;35(4):345-55.
  • 14. Carrazedo R, Ribeiro R, Humberto P, Coda B. Active face prismatic positional finite element for linear and geometrically nonlinear analysis of honeycomb sandwich plates and shells. Compos Struct. 2018;200:849-63.
  • 15. Zhang J, Zhu X, Yang X, Zhang W. Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads. Int J Impact Eng. 2019;134: 103383.
  • 16. Zhang JH, Zhang W. Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a honeycomb sandwich plate. Acta Mech. 2012;223:1047-66.
  • 17. Zhang J, Yang X, Zhang W. Free vibrations and nonlinear responses for a cantilever honeycomb sandwich plate. Adv Mater Sci Eng. 2018. https://doi.org/10.1155/2018/8162873.
  • 18. Hao WL, Zhang W, Yao MH. Multipulse chaotic dynamics of six-dimensional nonautonomous nonlinear system for a honeycomb sandwich plate. Int J Bifurc Chaos. 2014;24(11):1450138.
  • 19. Nguyen DD, Pham CH. Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. J Sandwich Struct Mater. 2018;20(6):692-717.
  • 20. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int. 2019;45(12):14908-20.
  • 21. Huang BT, Li CH, Zhang YB, Ding WF, Yang M, Yang YY, Zhai H, Xu XF, Wang DZ, Debnath S, Jamil M, Li HN, Ali HM, Gupta MK, Said Z. Advances in fabrication of ceramic corundum abrasives based on sol-gel process. Chin J Aeronautics. 2021;34(6):1-17.
  • 22. Yaghoobi H, Taheri F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and nonuniform porous core reinforced with graphene nanoplatelets. Compos Struct. 2020;252: 112700.
  • 23. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q, Cao H. Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod. 2018;193:236-48.
  • 24. Nguyen NV, Nguyen LB, Nguyen-Xuan H, Lee J. Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bézier extraction of NURBS. Int J Mech Sci. 2020;180: 105692.
  • 25. Guo H, Yang T, Żur KK, Reddy JN. On the futter of matrix cracked laminated composite plates reinforced with graphene nanoplatelets. Thin-Wall Struct. 2021;158: 107161.
  • 26. Huang K, Guo H, Qin Z, Cao S, Chen Y. Flutter analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Aerosp Sci Technol. 2020;103: 105915.
  • 27. Thai CH, Ferreira AJM, Tran TD, Phung-Van P. Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos Struct. 2019;220:749-59.
  • 28. Chen J, Zhang Z, Lu H. Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surfaces and Interfaces. 2022;33. https://oi.org/10.1016/j.surfn.2022.102289.
  • 29. Li J, Liang Z, Chen Z, Zhang Z, Liu H, Liu, Z, Xu Z. Engineering unsaturated sulfur site in three-dimension MoS2@rGO nanohybrids with expanded interlayer spacing and disordered structure for gaseous elemental mercury trap. Chem Eng J 2023;453:139767.
  • 30. Yu Y, Shen HS, Wang H, Hui D. Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments. Compos B Eng. 2018;135:72-83.
  • 31. Ji H, Liang X. Nonlinear frequency and chaotic motion of the honeycomb higher-order disk with graphene nanoplatelets face sheets subjected to harmonic excitation via two-dimensional analysis. Mec Based Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2021.1903493.
  • 32. Duan Z, Li C, Ding W, Zhang Y, Yang M, Gao T, Cao H, Xu X, Wang D, Mao C, Li HN, Kumar GM, Said Z, Debnath S, Jamil M, Ali HM. Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chin J Mech Eng. 2021;34(1):1-35.
  • 33. Yang YY, Gong YD, Li CH, Wen XL, Sun JY. Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J Mater Proces Techn. 2021;291: 117023.
  • 34. Li H, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z, Debnath S, Jamil M, Ali HM, Sharma S. Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean J Chem Eng. 2022;39:1107-34.
  • 35. Xu W, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M, Wang X, Said Z, Liu X, Zou Z. Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int J Extrem Manuf. 2022;4: 042003.
  • 36. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, Zhang SLI, Cao HN, Ali H, Zhou HM, Sharma Z, Sh. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng. 2022;17(2):24.
  • 37. Duan ZJ, Li CH, Zhang YB, Dong L, Bai XF, Yang M, Jia DZ, Li RZ, Cao HJ, Xu XF. Milling surface roughness for 7050 aluminum alloy cavity infuenced by nozzle position of nanofluid minimum quantity lubrication. Chin J Aeronaut. 2021;34(6):33-53.
  • 38. Şimşek M. Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int J Eng Sci. 2016;105:12-27.
  • 39. Ghayesh MH, Amabili M, Farokhi H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci. 2013;63:52-60.
  • 40. Ghadiri M, Hamed S, Hosseini S. Nonlinear dual frequency excited vibration of viscoelastic graphene sheets exposed to thermo-magnetic field. Commun Nonlinear Sci Numer Simul. 2020;83: 105111.
  • 41. Wang X, Li C, Zhang Y, Said Z, Debath S, Sharma S, Yang M. Gao, T. Infuence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. The Int J Adv Manufact Techn. 2022;119(1-2):631-46.
  • 42. Torabi K, Afshari H, Aboutalebi FH. Vibration and futter analyses of cantilever trapezoidal honeycomb sandwich plates. J Sandw Struct Mater. 2017;21(8):2887-920.
  • 43. Mohammad-Rezaei Bidgoli E, Arefi M, Mohammadimehr M. Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers. Mech Base Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1836969.
  • 44. Arefi M, Mohammad-Rezaei Bidgoli E, Dimitri R, Tornabene F. Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerosp Sci Technol. 2018;81:108-17.
  • 45. Aref M, Mohammad-Rezaei Bidgoli E, Rabczuk T. Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. Thin-Wall Struct. 2019;142:444-59.
  • 46. Shamsaddini Lori E, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H. The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. 2021;37:3489-508.
  • 47. Guo H, Ouyang X, Yang T, Żur KK, Reddy JN. On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets. Eng Struct. 2021;249: 113286.
  • 48. Mohammad-Rezaei Bidgoli E, Aref M. Free vibration analysis of microplates reinforced with functionally graded graphene nanoplatelets. Innovations in graphene-based polymer Composites. Amsterdam: Elsevier; 2022. p. 521-57.
  • 49. Feng C, Kitipornchai S, Yang J. Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng Struct. 2017;140:110-9.
  • 50. Zhao S, Zhao Z, Yang Z, Ke LL, Kitipornchai S, Yang J. Functionally graded graphene reinforced composite structures: a review. Eng Struct. 2020;210: 110339.
  • 51. Rafiee M, Nitzsche F, Labrosse MR. Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: nonlinear bending, thermal post-buckling and large amplitude vibration. Int J Non-Linear Mech. 2018;103:104-12.
  • 52. Ganapathi M, Aditya S, Shubhendu S, Polit O, Ben ZT. Nonlinear supersonic futter study of porous 2D curved panels including graphene platelets reinforcement effect using trigonometric shear deformable finite element. Int J Non-Linear Mech. 2020;125: 103543.
  • 53. Arefi M, Mohammad-Rezaei Bidgoli E, Rabczuk T. Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Europ J Mech-A/Solids. 2019;77: 103802.
  • 54. Arefi M, Amabili M. A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell based on nonlocal three-dimensional theory. Compos Struct. 2021;257(1): 113100.
  • 55. Babaei H, Eslami MR. On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory. Compos Struct. 2021;256: 113125.
  • 56. Zhu P, Liew KM. Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method. Compos Struct. 2011;93(11):2925-44.
  • 57. Akavci SS, Tanrikulu AH. Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories. Compos B Eng. 2015;83:203-15.
  • 58. Hashemi S, Jafari AA. An analytical solution for nonlinear vibrations analysis of functionally graded plate using modified lindstedt-poincare method. Int J Appl Mech. 2020;12(1):2050003.
  • 59. Zenkour AM, Radwan AF. Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Archs Civil Mech Eng. 2018;18:645-58.
  • 60. Zenkour AM, Allam MNM, Radwan AF. Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations. Arch Civil Mech Eng. 2014;14:144-59.
  • 61. Zhang X, Tang Y, Zhang F, Lee C. a novel aluminum-graphite dual-ion battery. Adv Energy Mater. 2016;6(11):1502588.
  • 62. Zhang Y, Liu G, Ye J, Lin Y. Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos Struct. 2022;299:116087.
  • 63. Liu X, Liu J, Yang H, Huang B, Zeng G. Design of a high-performance graphene/SiO2-Ag periodic grating/MoS2 surface plasmon resonance sensor. Appl Opt. 2022;61(23):6752-60.
  • 64. Li S, Liu Z. Scheduling uniform machines with restricted assignment. Math Biosci Eng. 2022;19(9):9697-708.
  • 65. Shi M, Zhu H, Chen C, Jiang J, Zhao L, Yan C. Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. Int J Miner Metall Mater. 2023;30(1):25-32.
  • 66. Lu Z, Liu W, Ding H, Chen L. Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator. J Vibr Acoust. 2022;144(5):051009.
  • 67. Fu Q, Gu M, Yuan J, Lin Y. Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway. Buildings. 2022;12(11):1982.
  • 68. Zhang Z, Sui M, Li C, Zhou Z, Liu B, Chen Y, Said Z, Debnath S, Sharma S. Residual stress of MoS2 nano-lubricant grinding cemented carbide. Int J Adv Manuf Tech. 2022;119:5671-85.
  • 69. Duan Z, Li C, Zhang Y, Yang M, Gao T, Liu X, Li R, Said Z, Debnath S. Sharma, S. Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant. Front Mech Eng. 2022. https://doi.org/10.1007/s11465-022-0720-4.
  • 70. Gao T, Li C, Yang M, Zhang Y, Jia D, Ding W, Debnath S, Yu T, Said Z. Wang, J,. Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J Mater Proces Techn. 2021;290:116976.
  • 71. Meng Q, Lai X, Yan Z, Su C, Wu M. Motion Planning and Adaptive Neural Tracking Control of an Uncertain Two-Link Rigid-Flexible Manipulator With Vibration Amplitude Constraint. IEEE transaction on neural networks and learning systems. 2022;33(8):3814-28.
  • 72. Wang D, Wang X, Jin ML, He P, Zhang S. Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation. Nano Energy. 2022;103:107819.
  • 73. Arani AG, Haghparast E, Ghorbanpour Arani AH. Size-dependent vibration of double-bonded carbon nanotube-reinforced composite microtubes conveying fluid under longitudinal magnetic feld. Polymer Composi 2016;37(5):1375-83.
  • 74. Xi M, Fu X, Yang H, He C, Fu L, Cheng X., Guo J. Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.12.041.
  • 75. Li Z, Zhang Q, Shen H, Xiao X, Kuai H, Zheng J. Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure. Thin-Walled Struct. 2023;183: 110370. https://doi.org/10.1016/j.tws.2022.110370.
  • 76. Xu H, He T, Zhong N, Zhao B, Liu Z. Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy. Tribol Int. 2022;167. https://doi.org/10.1016/j.triboint. 2021.107362.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52e80af7-9c18-4116-809a-1c35e9c812b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.