PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic analysis of optimized two-phase auxetic structure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a dynamic analysis of earlier optimized auxetic structure. This optimization based on the distribution of two materials in such way to obtain a minimal value of Poisson’s ratio (PR), which indicates the auxetic properties. The initial optimized shape was so-called star structure, which if is made from one material has the PR close to 0.188. After optimization with the goal function of PR-minimization, the obtained value was equal to -9.5043. Then the eigenfrequencies for the optimized structure were investigated. The calculations were carried out by means of Finite Element Method (FEM). For optimization of the value of Poisson’s ratio was used algorithm MMA (Method of Moving Asymptotes). The computing of single material properties (PR, Young’s modulus, density) for the whole shape was made by means of SIMP method (Solid Isotropic Method with Penalization).
Rocznik
Tom
Strony
art. no. 2017003
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Institute of Applied Mechanics, Poznan University of Technology, ul. Jana Pawla II 24, 60-965 Poznan, Poland
autor
  • Institute of Applied Mechanics, Poznan University of Technology, ul. Jana Pawla II 24, 60-965 Poznan, Poland
Bibliografia
  • 1. E. A. Friis, R. S. Lakes, J.B. Park, Negative Poisson’s ratio polymeric and metallic foams., Science, 23 (12) ( 1988 ), 4406-4414.
  • 2. M.N. Ali, J.J.C. Busfield,., I.U. Rehman, Auxetic oesophageal stents: structure and mechanical properties, Journal of Materials Science: Materials in Medicine, 25(2) (2014), 527-553.
  • 3. M. Rad, A. Zaini, A. Amran, Computational Approach in Formulating Mechanical Characteristics of 3D Star Honeycomb Auxetic Structure, Advances in Materials Science and Engineering (2015), 1-11.
  • 4. C.W. Smith, J.N. Grima, K. E. Evans A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model, Acta Materialia 48(17) (2000), 4349-4356.
  • 5. A. Alderson, K.L. Alderson, D. Attard, K.E. Evans, K.E., R. Gatt, J.N. Grima, W. Miller, N. Ravirala, C.W. Smith, C.W., K. Zied, Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Composites Science and Technology, 70( 7) (2010), 1042- 1048.
  • 6. L.J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials. Proc. R. Soc. A Math. Phys. Eng. Sci., 382 (1982) 43-59.
  • 7. R.S. Lakes, Foam Structures with a Negative Poisson’s Ratio. Science (80-. ), 235 (1987), 1038-1040.
  • 8. R.S. Lakes, Deformation Mechanisms in Negative Poisson's Ratio Materials: Structural Aspects, J. Mat. Sci., 26 (1991) 2287-2292.
  • 9. D. Prall, R.S. Lakes, Properties of a Chiral Honeycomb with Poisson's Ratio of -1, Int. J. of Mechanical Sciences, 39 (1996) 305-314.
  • 10. F. Scarpa, L.G. Ciffo, J. R. Yates, Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater. Struct. 13 (2004) 49-56.
  • 11. A. Spadoni, M. Ruzzene, F. Scarpa, Dynamic response of chiral truss-core assemblies, Journal of intelligent material systems and structures, 17(11) (2006) 941-952.
  • 12. A. Spadoni, M. Ruzzene, Structural and Acoustic Behavior of Chiral Trusscore Beams, Proceedings of the ASME (IMECE 2004) Noise Control and Acoustic Division 2004.
  • 13. Joshi H. R. , Finite Element Analysis of effective mechanical properties, vibration and acoustic performance of auxetic chiral core sandwich structures, All Theses., Clemson University, Clemson, South Carolina 2013.
  • 14. R.R Galgalikar, Design automation and optimization of honeycomb structures for maximum sound transmission loss, Clemson University, Clemson, South Carolina 2012.
  • 15. E. Idczak, T. Stręk, Computational Modelling of Vibrations Transmission Loss of Auxetic Lattice Structure, Vibrations in Physical Systems 27 (2016) 124-128.
  • 16. M. Nienartowicz, T. Stręk, Finite Element Analysis of Dynamic Properties of Thermally Optimal Two-Phase Composite Structure, Vibrations in Physical Systems 26 (2014) 203-210.
  • 17. W. Liu, M. Wang, T. Luo, Z. Lin, In-plane dynamic crushing of re-entrant auxetic cellular structure, Materials & Design, 100 (2016) 84-91.
  • 18. T. Strek, H. Jopek, M. Nienartowicz, Dynamic response of sandwich panels with auxetic cores, Phys. Status Solidi B, 252(7) (2015) 1540 - 1550.
  • 19. T. Strek, H. Jopek, K.W. Wojciechowski The influence of large deformations on mechanical properties of sinusoidal ligament structures, Smart Materials and Structures, 25(5) (2016) 05402.
  • 20. B. Lautrup, Physics of Continuous Matter, Exotic and Everyday Phenomena in the Macroscopic World, IOP 2005.
  • 21. O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, Volume 2, Solid Mechanics, Butterworth-Heinmann 2000.
  • 22. E. Idczak, T. Strek, Minimization of Poisson's ratio in anti-tetra-chiral two-phase structure, IOP Conf. Ser.: Mater. Sci. Eng. 248 (2017) 012006.
  • 23. T. Stręk, H. Jopek, E. Idczak, K.W. Wojciechowski, Computational Modelling of Structures with Non-Intuitive Behaviour. Materials 10 (2017), 1386.
  • 24. M. Nienartowicz, T. Stręk, Modeling and FEM analysis of dynamic properties of thermally optimal composite materials, 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52e66cf2-950c-482a-b2f8-424d9c97b7fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.