Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Diabetic Macular Edema (DME) is a potentially blinding consequence of Diabetic Retinopathy (DR) as well as the leading cause of vision loss in diabetics. DME is characterized by a buildup of extracellular fluid inside the macula through hyperpermeable vessels. The presence of DME can be spotted at any level of DR with varying degrees of severity using prominent imaging modalities such as Color Fundus Photography (CFP) and Optical Coherence Tomography (OCT). Computerized approaches for screening eye disorders appear to be beneficial, as they provide doctors with detailed insights into abnormalities. Such a system for the evaluation of retinal images can function as a stand-alone disease monitoring system. This review reports the state-of-art automated DME detection methods with traditional Machine Learning (ML) and Deep Learning (DL) techniques employing retinal fundus or OCT images. The paper provides a list of public retinal OCT and fundus imaging datasets for DME detection. In addition, the paper describes the dynamics of advancements in presented methods adopted in the past along with their strengths and limitations to highlight the insufficiencies that could be addressed in future investigations.
Wydawca
Czasopismo
Rocznik
Tom
Strony
157--188
Opis fizyczny
Bibliogr. 260 poz., rys., tab., wykr.
Twórcy
autor
- Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
autor
- Deputy Registrar Academics (Technical), Manipal Academy of Higher Education, and Professor, Department of Information and Communication Technology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
autor
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
autor
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education Manipal, Karnataka, India
Bibliografia
- [1] Pandey S, Sharma V. World diabetes day 2018: Battling the emerging epidemic of diabetic retinopathy. Indian J Ophthalmol 2018;66(11):1652-3.
- [2] International Diabetes Federation; Brussels, Belgium; 10th ed.; 2021. URL https://www.diabetesatlas.org.
- [3] Blindness and vision impairment. 2021. https://www.who. int/news-room/fact-sheets/detail/blindness-and-visualimpairment.
- [4] Yau J, Rogers S, Kawasaki R, Lamoureux E, Kowalski J, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012;35(3):556-64.
- [5] Ferris III F, Patz A. Macular edema. a complication of diabetic retinopathy. Surv Ophthalmol 1984;28(SUPPL. 2):452-61.
- [6] Kurmann T, Yu S, Márquez-Neila P, Ebneter A, Zinkernagel M, Munk M, et al. Expert-level automated biomarker identification in optical coherence tomography scans. Sci Rep 2019;9(1).
- [7] Novo J, Rouco J, Barreira N, Ortega M, Penedo M, Campilho A. Wivern: a web-based system enabling computer-aided diagnosis and interdisciplinary expert collaboration for vascular research. J Medical Biol Eng 2017;37(6):920-35.
- [8] Taylor R, Batey D. Handbook of Retinal Screening in Diabetes: Diagnosis and Management. United Kingdom: Wiley-Blackwell; 2012.
- [9] Alyoubi W, Shalash W, Abulkhair M. Diabetic retinopathy detection through deep learning techniques: A review. Informat Med Unlocked 2020;20:100377.
- [10] Kanski JJ, Bowling B. Kanski’s clinical ophthalmology ebook: a systematic approach. Edinburgh: Elsevier Health Sciences; 2015.
- [11] Kumagai AK. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes/metabolism Res Rev 1999;15(4):261-73.
- [12] Pfeiffer A, Spranger J, Meyer-Schwickerath R, Schatz H. Growth factor alterations in advanced diabetic retinopathy: a possible role of blood retina barrier breakdown. Diabetes 1997;46(Supplement 2):S26-30.
- [13] Lee R, Wong YT, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye and Vision 2015;2(1):1-25.
- [14] Schachat A, Wilkinson C, Hinton D, Sadda S, Wiedemann P. Ryan’s Retina. London: Elsevier Health Sciences; 2017.
- [15] Mehta N, Tsui E, Lee G, Dedania V, Modi Y. Imaging biomarkers in diabetic retinopathy and diabetic macular edema. Int Ophthalmol Clinics 2019;59(1):241-62.
- [16] Kwan C, Fawzi A. Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Curr Diabet Rep 2019;19(10):1-10.
- [17] Eladawi N, Elmogy M, Ghazal M, Mahmoud HA, Mahmoud H, Alhalabi Talal M. et al. Optical coherence tomography: A review. In: El-Baz S., A., Suri S., J., editors. Diabetes and Fundus OCT; vol. 1; chap. 7. Elsevier; 2020.
- [18] Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 1999;127(6):688-93.
- [19] Samagaio G, Estévez A, de Moura J, Novo J, Ortega M, Fernández MI. Automatic identification of macular edema in optical coherence tomography images. In: VISIGRAPP (4: VISAPP); 2018a. p. 533-540.
- [20] de Moura J, Novo J, Penas S, Ortega M, Silva J, Mendonça AM. Automatic characterization of the serous retinal detachment associated with the subretinal fluid presence in optical coherence tomography images. Proc Comput Sci 2018:244-53.
- [21] Deepak K, Joshi G, Sivaswamy J. Content-based retrieval of retinal images for maculopathy. In: Proceedings of the 1st ACM International Health Informatics Symposium; 2010. p. 135-143.
- [22] Naguib AM, Ghanem AM, Fahmy AS. Content based image retrieval of diabetic macular edema images. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems; 2013. p. 560-562.
- [23] Baby CG, Chandy DA. Content-based retinal image retrieval using dual-tree complex wavelet transform. In: 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition; 2013. p. 195-199.
- [24] Rahim SS, Palade V, Jayne C, Holzinger A, Shuttleworth J. Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In: International Conference on Brain Informatics and Health; 2015. p. 379-388.
- [25] Rahim S, Palade V, Shuttleworth J, Jayne C. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Informat 2016;3(4):249-67.
- [26] Ibrahim S, Chowriappa P, Dua S, Acharya U, Noronha K, Bhandary S, et al. Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Medical Biol Eng Comput 2015;53(12):1345-60.
- [27] Chua C, Mookiah M, Koh J, Acharya U, Lim C, Laude A, et al. Automated diagnosis of maculopathy stages using texture features. Int J Integrated Care (IJIC) 2013:13.
- [28] Vasanthi S, Wahida Banu R. Automatic segmentation and classification of hard exudates to detect macular edema in fundus images. J Theoret Appl Informat Technol 2014;66(3).
- [29] Nayak J, Bhat P, Acharya U. Automatic identification of diabetic maculopathy stages using fundus images. J Med Eng Technol 2009;33(2):119-29.
- [30] Siddalingaswamy P, Prabhu KG. Automatic grading of diabetic maculopathy severity levels. In: 2010 International Conference on Systems in Medicine and Biology; 2010. p. 331-334.
- [31] Sharma P, Nirmala S, Sarma KK. A system for grading diabetic maculopathy severity level. Network Model Anal Health Informat Bioinformat 2014;3:1-9.
- [32] Lim S, Zaki W, Hussain A, Lim S, Kusalavan S. Automatic classification of diabetic macular edema in digital fundus images. 2011 IEEE Colloquium on Humanities, Science and Engineering, 2011. p. 265-9.
- [33] Ang MH, Acharya UR, Sree SV, Lim TC, Suri JS. Computer-based identification of diabetic maculopathy stages using fundus images. In: Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies. Springer; 2011. p. 377-99.
- [34] Hunter A, Lowell JA, Ryder B, Basu A, Steel, D. Automated diagnosis of referable maculopathy in diabetic retinopathy screening. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011. p. 3375-3378.
- [35] Akram MU, Akhtar M, Javed MY. An automated system for the grading of diabetic maculopathy in fundus images. In: International Conference on Neural Information Processing; 2012. p. 36-43.
- [36] Giancardo L, Meriaudeau F, Karnowski T, Li Y, Garg S, Tobin K, et al. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Anal 2012;16(1):216-26.
- [37] Deepak K, Sivaswamy J. Automatic assessment of macular edema from color retinal images. IEEE Trans Medical Imag 2012;31(3):766-76.
- [38] Deepak K, Medathati N, Sivaswamy J. Detection and discrimination of disease-related abnormalities based on learning normal cases. Pattern Recognit 2012;45(10):3707-16.
- [39] Ramasubramanian B. An efficient integrated approach for the detection of exudates and diabetic maculopathy in colour fundus images. Adv Comput: Int J 2012;3(5):83.
- [40] Punnolil A. A novel approach for diagnosis and severity grading of diabetic maculopathy. In: 2013 international conference on advances in computing, communications and informatics (ICACCI); 2013. p. 1230-1235.
- [41] Sreejini K, Govindan V. Automatic grading of severity of diabetic macular edema using color fundus images. In: 2013 Third International Conference on Advances in Computing and Communications; 2013. p. 177-180.
- [42] Tariq A, Akram M, Shaukat A, Khan S. Automated detection and grading of diabetic maculopathy in digital retinal images. J Digital Imag 2013;26(4):803-12.
- [43] Chowriappa P, Dua S, Rajendra Acharya U, Muthu Rama Krishnan M. Ensemble selection for feature-based classification of diabetic maculopathy images. Comput Biol Med 2013;43(12):2156-62.
- [44] Medhi JP, Dandapat, S. Analysis of maculopathy in color fundus images. In: 2014 Annual IEEE India Conference; 2014. p. 1-4.
- [45] Murugeswari S, Sukanesh R. Investigations of severity level measurements for diabetic macular oedema using machine learning algorithms. Irish J Med Sc 2017;186(4):929-38.
- [46] Ramya M, Vijayprasath S. An effective analysis of macular edema severityfor diabetic retinopathy. Int J Innovat Res Sci Eng Technol 2014:3.
- [47] Kunwar A, Magotra S, Sarathi MP. Detection of high-risk macular edema using texture features and classification using svm classifier. In: 2015 International Conference on Advances in Computing, Communications and Informatics; 2015. p. 2285-2289.
- [48] Mookiah M, Acharya U, Chandran V, Martis R, Tan J, Koh J, et al. Application of higher-order spectra for automated grading of diabetic maculopathy. Med Biol Eng Comput 2015;53(12):1319-31.
- [49] Medhi J, Dandapat S. An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images. Comput Biol Med 2016;74:30-44.
- [50] Medhi JP, Dandapat S. Improved analysis of diabetic maculopathy using level set spatial fuzzy clustering. In: 2016 Twenty Second National Conference on Communication (NCC); 2016b. p. 1-6.
- [51] Shaik M. An approach for iris segmentation and maculopathy detection and grading of diabetic retinal images. IIOAB J 2016;7:193-201.
- [52] Johny A, Thomas A. A novel approach for detection of diabetic macular edema. In: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS); 2016. p. 1-4.
- [53] Marin D, Gegundez-Arias M, Ortega C, Garrido J, Ponte B, Alvarez F. Automated detection of diabetic macular edema risk in fundus images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2016;9656:380-90.
- [54] Gulshan V, Peng L, Coram M, Stumpe M, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA - J Am Med Assoc 2016;316(22):2402-10.
- [55] Decencière E, Zhang X, Cazuguel G, Laÿ B, Cochener B, Trone C, et al. Feedback on a publicly distributed image database: The messidor database. Image Anal Stereol 2014;33(3):231-4.
- [56] Abràmoff M, Folk J, Han D, Walker J, Williams D, Russell S, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 2013;131 (3):351-7.
- [57] Decencière E, Cazuguel G, Zhang X, Thibault G, Klein JC, Meyer F, et al. Teleophta: Machine learning and image processing methods for teleophthalmology. IRBM 2013;34 (2):196-203.
- [58] Khan S, Liu X, Nath S, Korot E, Faes L, Wagner S, et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digital Health 2021;3(1):e51-66.
- [59] Kauppi T, Kalesnykiene V, Kamarainen J, Lensu L, Sorri I, Usitalo H, et al. Diaretdb0: Evaluation database and methodology for diabetic retinopathy algorithms. Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland 2006;73:1-17.
- [60] Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, et al. The diaretdb1 diabetic retinopathy database and evaluation protocol. In: ABMVC. p. 1-10.
- [61] Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, et al. Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 2018;3(3):25.
- [62] Li T, Gao Y, Wang K, Guo S, Liu H, Kang H. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Informat Sci 2019;501:511-22.
- [63] Holm S, Russell G, Nourrit V, Mcloughlin N. Dr hagis - a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. J Med Imag 2017;4(1):014503.
- [64] Hassan T, Akram M, Masood M, Yasin, U. Biomisa retinal image database for macular and ocular syndromes. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2018;10882 LNCS:695-705.
- [65] Hassan T, Raja H, Hassan B, Akram MU, Dias J, Werghi N. A composite retinal fundus and oct dataset to grade macular and glaucomatous disorders. In: 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2). IEEE; 2022. p. 1-6.
- [66] Srinivasan P, Kim L, Mettu P, Cousins S, Comer G, Izatt J, et al. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Exp 2014;5 (10):3568-77.
- [67] Wu J, Philip AM, Podkowinski D, Gerendas B, Langs G, Simader C, et al. Multivendor spectral-domain optical coherence tomography dataset, observer annotation performance evaluation, and standardized evaluation framework for intraretinal cystoid fluid segmentation. J Ophthalmol 2016;2016.
- [68] Optima cyst segmentation challenge. 2015. https://optima. meduniwien.ac.at/research/challenges/.
- [69] Rasti R, Rabbani H, Mehridehnavi A, Hajizadeh F. Macular oct classification using a multi-scale convolutional neural network ensemble. IEEE Trans Med Imag 2018;37(4):1024-34.
- [70] Kermany D, Goldbaum M. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172(5):1122-1131.
- [71] Chiu S, Allingham M, Mettu P, Cousins S, Izatt J, Farsiu S. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Opt Exp 2015;6(4):1172-94.
- [72] Bogunovic H, Venhuizen F, Klimscha S, Apostolopoulos S, Bab-Hadiashar A, Bagci U, et al. Retouch: The retinal oct fluid detection and segmentation benchmark and challenge. IEEE Trans Med Imag 2019;38(8):1858-74.
- [73] Gholami P, Roy P, Parthasarathy M, Lakshminarayanan V. Octid: Optical coherence tomography image database. Comput Electr Eng 2020;81.
- [74] Magotra S, Kunwar A, Sengar N, Sarathi MP, Dutta MK. Hierarchical classification and grading of diabetic macular edema using texture features. In: 2015 Third International Conference on Image Information Processing (ICIIP); 2015. p. 185-189.
- [75] Lim S, Ahmed M, Lim S. Automatic classification of diabetic macular edema using a modified completed local binary pattern (clbp). In: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA); 2017. p. 6-10.
- [76] Acharya UR, Mookiah MRK, Koh JE, Tan JH, Bhandary SV, Rao AK, et al. Automated diabetic macular edema (dme) grading system using dwt, dct features and maculopathy index. Comput Biol Med 2017;84:59-68.
- [77] Rekhi RS, Issac A, Dutta MK. Automated detection and grading of diabetic macular edema from digital colour fundus images. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON); 2017. p. 482-486.
- [78] Punniyamoorthy U, Pushpam I. Remote examination of exudates-impact of macular oedema. Healthcare Technol Lett 2018;5(4):118-23.
- [79] Marin D, Gegundez-Arias M, Ponte B, Alvarez F, Garrido J, Ortega C, et al. An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification. Med Biol Eng Comput 2018;56(8):1379-90.
- [80] Zhou W, Wu C, Yu X. Computer aided diagnosis for diabetic retinopathy based on fundus image. In: 2018 37th Chinese Control Conference (CCC); 2018. p. 9214-9219.
- [81] Syed A, Akram M, Akram T, Muzammal M, Khalid S, Khan M. Fundus images-based detection and grading of macular edema using robust macula localization. IEEE Access 2018;6:58784-93.
- [82] Ren F, Cao P, Zhao D, Wan C. Diabetic macular edema grading in retinal images using vector quantization and semi-supervised learning. Technol Health Care 2018;26(S1): S389-97.
- [83] Sri RM, Jyothirmai J, Renuka H. Exudates and colour analysis for the detection of diabetic macular edema. In: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT); 2019. p. 1-4.
- [84] Thulkar D, Daruwala R. Detection of exudate for diabetic macular edema classification. In: 2019 5th International Conference on Science and Technology (ICST). vol. 1; 2019. p. 1-4.
- [85] Singh R, Gorantla R. Dmenet: Diabetic macular edema diagnosis using hierarchical ensemble of cnns. PLoS ONE 2020;15(2).
- [86] Al-Bander B., Al-Nuaimy W, Al-Taee MA, Williams BM, Zheng Y. Diabetic macular edema grading based on deep neural networks. In: Ophthalmic Medical Image Analysis International Workshop. Vol. 3; 2016.
- [87] Auccahuasi W, Flores E, Sernaque F, Cueva J, Diaz M, Oré E. Recognition of hard exudates using deep learning. Procedia Comput Sci 2020;167:2343-53.
- [88] Al Turk L, Wang S, Krause P, Wawrzynski J, Saleh G, Alsawadi H, et al. Evidence based prediction and progression monitoring on retinal images from three nations. Transl Vision Sci Technol 2020;9(2):1-12.
- [89] Mo J, Zhang L, Feng Y. Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks. Neurocomputing 2018;290:161-71.
- [90] Li Z, Keel S, Liu C, He Y, Meng W, Scheetz J, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care 2018;41 (12):2509-16.
- [91] Bressler I, Aviv R, Margalit D, Ianchulev S, Dvey-Aharon Z. Autonomous screening for diabetic macular edema using deep learning processing of retinal images. medRxiv 2022. https://doi.org/10.1101/2022.08.07.22278511.
- [92] Yu Q, Wang F, Zhou L, Yang J, Liu K, Xu X. Quantification of diabetic retinopathy lesions in dme patients with intravitreal conbercept treatment using deep learning. Ophthalmic Surg Lasers Imag Retina 2020;51(2):95-100.
- [93] Nazir T, Irtaza A, Javed A, Malik H, Hussain D, Naqvi R. Retinal image analysis for diabetes-based eye disease detection using deep learning. Appl Sci (Switzerland) 2020;10(18).
- [94] Wu J, Zhang Q, Liu M, Xiao Z, Zhang F, Geng L, et al. Diabetic macular edema grading based on improved faster r-cnn and md-resnet. Signal Image Video Process 2021;15(4):743-51.
- [95] Harangi B, Toth J, Baran A, Hajdu A. Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019. p. 2699-2702.
- [96] Raumviboonsuk P, Krause J, Chotcomwongse P, Sayres R, Raman R, Widner K, et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. npj Digital Med 2019;2(1).
- [97] Li F, Wang Y, Xu T, Dong L, Yan L, Jiang M. et al. Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye (Basingstoke) 2021a;:1-9.
- [98] Ahn S, Pham Q, Shin J, Song S. Future image synthesis for diabetic retinopathy based on the lesion occurrence probability. Electronics (Switzerland) 2021;10(6):1-12.
- [99] Kamble R, Srivastava A, Singhal N. Laden: Lesion-aware adversarial deep network for grading of macular diseases using color fundus images. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI); 2022. p. 1-4.
- [100] Perdomo O, Otalora S, Rodríguez F, Arevalo J, González FA. A novel machine learning model based on exudate localization to detect diabetic macular edema. In: Ophthalmic Medical Image Analysis International Workshop. Vol. 3; 2016.
- [101] Sahlsten J, Jaskari J, Kivinen J, Turunen L, Jaanio E, Hietala K, et al. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci Rep 2019;9(1).
- [102] Chalakkal R, Hafiz F, Abdulla W, Swain A. An efficient framework for automated screening of clinically significant macular edema. Comput Biol Med 2021;130.
- [103] Sarki R, Ahmed K, Zhang Y. Early detection of diabetic eye disease through deep learning using fundus images. EAI Endorsed Trans Pervasive Health Technol 2020;6(22):1-8.
- [104] Liu X, Ali TK, Singh P, Shah A, McKinney SM, Ruamviboonsuk P, et al. Deep learning to detect oct-derived diabetic macular edema from color retinal photographs: A multicenter validation study. Ophthalmol Retina 2022;6 (5):398-410.
- [105] Kumar A, Tewari AS, Singh JP. Classification of diabetic macular edema severity using deep learning technique. Res Biomed Eng 2022;38(3):977-87.
- [106] Kumar A, Tewari AS. Risk identification of diabetic macular edema using e-adoption of emerging technology. Int J EAdoption (IJEA) 2022;14(3):1-20.
- [107] Arcadu F, Benmansour F, Maunz A, Michon J, Haskova Z, McClintock D, et al. Deep learning predicts oct measures of diabetic macular thickening from color fundus photographs. Investig Ophthalmol Visual Sci 2019;60 (4):852-7.
- [108] He X, Zhou Y, Wang B, Cui S, Shao L. Dme-net: Diabetic macular edema grading by auxiliary task learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2019a;11764 LNCS:788-796.
- [109] Varadarajan A, Bavishi P, Ruamviboonsuk P, Chotcomwongse P, Venugopalan S, Narayanaswamy A, et al. Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. Nat Commun 2020;11(1):1-8.
- [110] Kang EC, Yeung L, Lee YL, Wu CH, Peng SY, Chen YP, et al. A multimodal imaging-based deep learning model for detecting treatment-requiring retinal vascular diseases: Model development and validation study. JMIR. Med Informat 2021;9(5).
- [111] Wang TY, Chen YH, Chen JT, Liu JT, Wu PY, Chang SY, et al. Diabetic macular edema detection using end-to-end deep fusion model and anatomical landmark visualization on an edge computing device. Front Med 2022:9.
- [112] Sulaiman T, Angel Arul Jothi J, Bengani S. Automated grading of diabetic macular edema using deep learning techniques. Lecture Notes Electr Eng 2020;659:264-272.
- [113] Li X, Hu X, Yu L, Zhu L, Fu CW, Heng PA. Canet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imag 2020;39(5):1483-93.
- [114] Purna Chandra Reddy V, Gurrala K. Joint dr-dme classification using deep learning-cnn based modified grey-wolf optimizer with variable weights. Biomed Signal Process Control 2022;73.
- [115] Liu YY, Ishikawa H, Chen M, Wollstein G, Duker J, Fujimoto J, et al. Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Investig Ophthalmol Visual Sci 2011;52(11):8316-22.
- [116] Wilkins GR, Houghton OM, Oldenburg AL. Automated segmentation of intraretinal cystoid fluid in optical coherence tomography. IEEE Trans Biomed Eng 2012;59 (4):1109-14.
- [117] Lemaıtre G, Rastgoo M, Massich J, Sankar S, Mériaudeau F, Sidibé D. Classification of sd-oct volumes with lbp: application to dme detection. In: Ophthalmic Medical Image Analysis International Workshop, vol. 2; 2015.
- [118] Lemaitre G, Rastgoo M, Massich J, Cheung C, Wong T, Lamoureux E, et al. Classification of sd-oct volumes using local binary patterns: Experimental validation for dme detection. J Ophthalmol 2016;2016.
- [119] Wang Y, Zhang Y, Yao Z, Zhao R, Zhou F. Machine learning based detection of age-related macular degeneration (amd) and diabetic macular edema (dme) from optical coherence tomography (oct) images. Biomed Opt Exp 2016;7:4928.
- [120] Alsaih K, Lemaıtre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F. Machine learning techniques for diabetic macular edema (dme) classification on sd-oct images. BioMed Eng OnLine 2017;16(68).
- [121] Arif AW, Nasim A, Syed AM, Hassan T. Automated diagnosis of retinal edema from optical coherence tomography images. In: 2017 International Conference on Computational Science and Computational Intelligence (CSCI); 2017. p. 554-557.
- [122] Sun Y, Li S, Sun Z. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. J Biomed Opt 2017;22(1).
- [123] Athira S, Roy RM, Aneesh, R. Computerized detection of macular edema using oct images based on fractal texture analysis. In: 2018 International CET Conference on Control, Communication, and Computing (IC4); 2018. p. 326-330.
- [124] Hussain M, Bhuiyan A, Luu C, Theodore Smith R, Guymer R, Ishikawa H, et al. Classification of healthy and diseased retina using sd-oct imaging and random forest algorithm. PLoS ONE 2018;13(6).
- [125] Dash P, Sigappi A. Automatic detection of diabetic macular edema from b-scan oct images based on pattern classification techniques. Eurasian J Anal Chem 2018;13 (3):219-30.
- [126] Dash P, Sigappi A. Detection and classification of retinal diseases in spectral domain optical coherence tomography images based on surf descriptors. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA); 2018b. p. 1-6.
- [127] Mousavi E, Kafieh R, Rabbani H. Classification of dry agerelated macular degeneration and diabetic macular oedema from optical coherence tomography images using dictionary learning. IET Image Process 2020;14(8):1571-9.
- [128] Roychowdhury S, Koozekanani DD, Radwan S, Parhi KK. Automated localization of cysts in diabetic macular edema using optical coherence tomography images. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2013. p. 1426-1429.
- [129] Sugmk J, Kiattisin S, Leelasantitham A. Automated classification between age-related macular degeneration and diabetic macular edema in oct image using image segmentation. In: The 7th 2014 biomedical engineering international conference; 2014. p. 1-4.
- [130] Syed A, Hassan T, Akram M, Naz S, Khalid S. Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3d retinal surfaces. Comput Methods Programs Biomed 2016;137:1-10.
- [131] Hassan B, Raja G, Hassan T, Akram M. Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images. J Opt Soc Am A: Opt Image Sci, Vision 2016;33 (4):455-63.
- [132] Hassan B, Hassan T. Fully automated detection, grading and 3d modeling of maculopathy from oct volumes. In: 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE); 2019. p. 252-257.
- [133] Hernández-Martínez C, Palazón-Bru A, Azrak C, Navarro-Navarro A, Baeza-Díaz M, Martinez-Toldos J, et al. Detection of diabetic macular oedema: Validation of optical coherence tomography using both foveal thickness and intraretinal fluid. PeerJ 2015;2015(11).
- [134] Naz S, Hassan T, Akram MU, Khan SA. A practical approach to oct based classification of diabetic macular edema. In: 2017 international conference on signals and systems (ICSigSys); 2017. p. 217-220.
- [135] Maurya P, Gupta V, Singh M, Singh A, Kumar B, Mohan A. Automated detection of diabetic macular edema involving cystoids and serous retinal detachment. Opt Laser Technol 2020;127.
- [136] Girish G, Kothari AR, Rajan J. Automated segmentation of intra-retinal cysts from optical coherence tomography scans using marker controlled watershed transform. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS); 2016. p. 1292-1295.
- [137] Sidibé D, Sankar S, Lemaıtre G, Rastgoo M, Massich J, Cheung C, et al. An anomaly detection approach for the identification of dme patients using spectral domain optical coherence tomography images. Comput Methods Programs Biomed 2017;139:109-17.
- [138] Fang L, Wang C, Li S, Yan J, Chen X, Rabbani H. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels. J Biomed Opt 2017;22(11).
- [139] Girish G, Anima V, Kothari A, Sudeep P, Roychowdhury S, Rajan J. A benchmark study of automated intra-retinal cyst segmentation algorithms using optical coherence tomography b-scans. Comput Methods Programs Biomed 2018;153:105-14.
- [140] Chen M, He J, Jia W, Qin X, Chen Z. Segmentation of diabetic macular edema for retinal oct images. In: Optics in Health Care and Biomedical Optics VIII; 2018. p. 59-69.
- [141] Samagaio G, De Moura J, Novo J, Ortega M. Automatic segmentation of diffuse retinal thickening edemas using optical coherence tomography images. Procedia Comput Sci 2018,:472-81.
- [142] Rashno A, Koozekanani D, Drayna P, Nazari B, Sadri S, Rabbani H, et al. Fully automated segmentation of fluid/cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph algorithms. IEEE Trans Biomed Eng 2018;65(5):989-1001.
- [143] de Moura J, Novo J, Charlón P, Fernández MI, Ortega M. Retinal vascular analysis in a fully automated method for the segmentation of drt edemas using oct images. Proc Comput Sci 2019;159:600-9.
- [144] de Moura J, Samagaio G, Novo J, Almuina P, Fernández M, Ortega M. Joint diabetic macular edema segmentation and characterization in oct images. J Digital Imag 2020;33 (5):1335-51.
- [145] de Moura J, Samagaio G, Novo J, Fernández MI, Gómez-Ulla F, Ortega M. Fully automated identification and clinical classification of macular edema using optical coherence tomography images. In: El-Baz S., A., Suri S., J., editors. Diabetes and Retinopathy; vol. 2; chap. 3. Elsevier; 2020b.
- [146] de Moura J, Samagaio G, Novo J, Charlón P, Fernández M, Gómez-Ulla F, et al. Automatic identification of diabetic macular edema biomarkers using optical coherence tomography scans. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2020c;12014 LNCS:247-255.
- [147] Wu J, Niu S, Chen Q, Fan W, Yuan S, Li D. Automated segmentation of intraretinal cystoid macular edema based on gaussian mixture model. J Innovat Opt Health Sci 2020;13 (1).
- [148] Wang Z, Zhang W, Sun Y, Yao M, Yan B. Detection of diabetic macular edema in optical coherence tomography image using an improved level set algorithm. BioMed Res Int 2020;2020.
- [149] Vidal P, de Moura J, Díaz M, Novo J, Ortega M. Diabetic macular edema characterization and visualization using optical coherence tomography images. Appl Sci (Switzerland) 2020;10(21):1-23.
- [150] Samagaio G, Estévez A, Moura J, Novo J, Fernández M, Ortega M. Automatic macular edema identification and characterization using oct images. Comput Methods Programs Biomed 2018;163:47-63.
- [151] Otero I, Vidal P, de Moura J, Novo J, Ortega M. Computerized tool for identification and enhanced visualization of macular edema regions using oct scans. In: Proceedings, 27th ESANN, Computational Intelligence and Machine Learning; 2019. p. 565-570.
- [152] Girish G, R Kothari A, Rajan J. Marker controlled watershed transform for intra-retinal cysts segmentation from optical coherence tomography b-scans. Pattern Recognit Lett 2020;139:86-94.
- [153] Mou L, Liang L, Gao Z, Wang X. A multi-scale anomaly detection framework for retinal oct images based on the bayesian neural network. Biomed Signal Process Control 2022;75.
- [154] Lee C, Tyring A, Deruyter N, Wu Y, Rokem A, Lee A. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Exp 2017;8 (7):3440-8.
- [155] Rasti R, Dehnavi A, Rabbani H, Hajizadeh F. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier. J Biomed Opt 2018;23(3):1-10.
- [156] Schlegl T, Waldstein S, Bogunovic H, Endstraßer F, Sadeghipour A, Philip AM, et al. Fully automated detection and quantification of macular fluid in oct using deep learning. Ophthalmology 2018;125(4):549-58.
- [157] Perdomo O, Otálora S, González FA, Meriaudeau F, Müller H. Oct-net: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018); 2018. p. 1423-1426.
- [158] Perdomo O, Rios H, Rodríguez F, Otálora S, Meriaudeau F, Müller H, et al. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Comput Methods Programs Biomed 2019;178:181-9.
- [159] Fang L, Jin Y, Huang L, Guo S, Zhao G, Chen X. Iterative fusion convolutional neural networks for classification of optical coherence tomography images. J Visual Commun Image Represent 2019;59:327-33.
- [160] Rashno A, Koozekanani DD, Parhi KK. Oct fluid segmentation using graph shortest path and convolutional neural network. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2018b. p. 3426-3429.
- [161] Kamran SA, Saha S, Sabbir AS, Tavakkoli A. Optic-net: A novel convolutional neural network for diagnosis of retinal diseases from optical tomography images. In: 18th IEEE International Conference On Machine Learning And Applications; 2019. p. 964-971.
- [162] Vidal PL, de Moura J, Novo J, Ortega M. Cystoid fluid color map generation in optical coherence tomography images using a densely connected convolutional neural network. In: International Joint Conference on Neural Networks; 2019. p. 1-8.
- [163] Ibrahim M, Fathalla K, Youssef S. Hycad-oct: A hybrid computer-aided diagnosis of retinopathy by optical coherence tomography integrating machine learning and feature maps localization. Appl Sci (Switzerland) 2020;10 (14).
- [164] Tennakoon R, Gostar AK, Hoseinnezhad R, Bab-Hadiashar A. Retinal fluid segmentation in oct images using adversarial loss based convolutional neural networks. In: IEEE 15th International Symposium on Biomedical Imaging; 2018. p. 1436-1440.
- [165] Huang L, He X, Fang L, Rabbani H, Chen X. Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network. IEEE Signal Process Lett 2019;26(7):1026-30.
- [166] Girish G, Saikumar B, Roychowdhury S, Kothari AR, Rajan J. Depthwise separable convolutional neural network model for intra-retinal cyst segmentation. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2019a. p. 2027-2031.
- [167] Girish G, Thakur B, Chowdhury S, Kothari A, Rajan J. Segmentation of intra-retinal cysts from optical coherence tomography images using a fully convolutional neural network model. IEEE J Biomed Health Informat 2019;23 (1):296-304.
- [168] Rong Y, Xiang D, Zhu W, Yu K, Shi F, Fan Z, et al. Surrogateassisted retinal oct image classification based on convolutional neural networks. IEEE J Biomed Health Informat 2019;23(1):253-63.
- [169] Gao K, Niu S, Ji Z, Wu M, Chen Q, Xu R, et al. Doublebranched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in sd-oct images. Comput Methods Programs Biomed 2019;176:69-80.
- [170] Li MX, Yu SQ, Zhang W, Zhou H, Xu X, Qian TW, et al. Segmentation of retinal fluid based on deep learning: Application of three-dimensional fully convolutional neural networks in optical coherence tomography images. Int J Ophthalmol 2019;12(6):1012-20.
- [171] Seebock P, Orlando J, Schlegl T, Waldstein S, Bogunovic H, Klimscha S, et al. Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal oct. IEEE Trans Medical Imag 2020;39(1):87-98.
- [172] Hu J, Chen Y, Yi Z. Automated segmentation of macular edema in oct using deep neural networks. Med Image Anal 2019;55:216-27.
- [173] Ahmed Z, Panhwar S, Baqai A, Umrani F, Ahmed M, Khan A. Deep learning based automated detection of intraretinal cystoid fluid. Int J Imag Syst Technol 2021;32(3):902-17.
- [174] Lu D, Heisler M, Lee S, Ding G, Navajas E, Sarunic M, et al. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Med Image Anal 2019;54:100-10.
- [175] Azimi B, Rashno A, Fadaei S. Fully convolutional networks for fluid segmentation in retina images. In: International Conference on Machine Vision and Image Processing (MVIP); 2020. p. 1-7.
- [176] Sun Z, Sun Y. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. J Biomed Opt 2019;24(5).
- [177] Gopinath K, Sivaswamy J. Segmentation of retinal cysts from optical coherence tomography volumes via selective enhancement. IEEE J Biomed Health Informat 2019;23 (1):273-82.
- [178] Das V, Dandapat S, Bora P. Multi-scale deep feature fusion for automated classification of macular pathologies from oct images. Biomed Signal Process Control 2019;54.
- [179] Alqudah A. Aoct-net: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Med Biol Eng Comput 2019;58(1):41-53.
- [180] Hassan T, Akram Usman M, Basit I. Analysis of optical coherence tomography images using deep convolutional neural network for maculopathy grading. In: El-Baz S., A., Suri S., J., editors. Diabetes and Retinopathy; vol. 2; chap. 5. Elsevier; 2020.
- [181] Wei H, Peng P. The segmentation of retinal layer and fluid in sd-oct images using mutex dice loss based fully convolutional networks. IEEE Access 2020;8:60929-39.
- [182] Tsuji T, Hirose Y, Fujimori K, Hirose T, Oyama A, Saikawa Y, et al. Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol 2020;20(1).
- [183] Rajagopalan N, Narasimhan V, Kunnavakkam Vinjimoor S, Aiyer J. Deep cnn framework for retinal disease diagnosis using optical coherence tomography images. J Ambient Intell Humanized Comput 2020;12(7):7569-80.
- [184] Rajagopalan N, Venkateswaran N, Josephraj A, Srithaladevi, E. Diagnosis of retinal disorders from optical coherence tomography images using cnn. PLoS ONE 2021;16(7 July).
- [185] Wang Z, Zhong Y, Yao M, Ma Y, Zhang W, Li C, et al. Automated segmentation of macular edema for the diagnosis of ocular disease using deep learning method. Sci Rep 2021;11(1).
- [186] A P, S, Kar, S, S, G, Gopi V, Palanisamy P. Octnet: A lightweight cnn for retinal disease classification from optical coherence tomography images. Comput Methods Programs Biomed 2021;200.
- [187] Sharma A, Khanna AV, Bhargava M. Multi-label classification of retinal disorders in optical coherence tomography using deep learning. In: Second International Conference on Electronics and Sustainable Communication Systems (ICESC); 2021. p. 1750-1757.
- [188] Hassan T, Akram M, Werghi N, Nazir M. Rag-fw: A hybrid convolutional framework for the automated extraction of retinal lesions and lesion-influenced grading of human retinal pathology. IEEE J Biomed Health Informat 2021;25 (1):108-20.
- [189] Awais M, Müller H, Tang TB, Meriaudeau F. Classification of sd-oct images using a deep learning approach. In: IEEE International Conference on Signal and Image Processing Applications (ICSIPA); 2017. p. 489-492.
- [190] Chan GC, Muhammad A, Shah SA, Tang TB, Lu CK, Meriaudeau F. Transfer learning for diabetic macular edema (dme) detection on optical coherence tomography (oct) images. In: 2017 IEEE international conference on signal and image processing applications (ICSIPA); 2017. p. 493-496.
- [191] Karri S, Chakraborty D, Chatterjee J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed Opt Exp 2017;8(2):579-92.
- [192] Li F, Chen H, Liu Z, Zhang X, Wu Z. Fully automated detection of retinal disorders by image-based deep learning. Graefe’s Archive Clin Exp Ophthalmol 2019;257(3):495-505.
- [193] Ji Q, He W, Huang J, Sun Y. Efficient deep learning-based automated pathology identification in retinal optical coherence tomography images. Algorithms 2018;11(6).
- [194] Kamble RM, Chan GCY, Perdomo O, Kokare M, González FA, Müller H. et al. Automated diabetic macular edema (dme) analysis using fine tuning with inception-resnet-v2 on oct images. In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES); 2018. p. 442-446.
- [195] Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y. Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Translational Vision. Sci Technol 2018:7.
- [196] Kaymak S, Serener A. Automated age-related macular degeneration and diabetic macular edema detection on oct images using deep learning. In: 2018 IEEE 14th international conference on intelligent computer communication and processing (ICCP); 2018. p. 265-269.
- [197] Guo Y, Hormel T, Xiong H, Wang J, Hwang T, Jia Y. Automated segmentation of retinal fluid volumes from structural and angiographic optical coherence tomography using deep learning. Transl Vision Sci Technol 2020;9(2):1-12.
- [198] Rastogi D, Padhy RP, Sa PK. Detection of retinal disorders in optical coherence tomography using deep learning. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT); 2019. p. 1-7.
- [199] Chetoui M, Akhloufi, M. Deep retinal diseases detection and explainability using oct images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2020;12132 LNCS:358-366.
- [200] Bhowmik A, Kumar S, Bhat N. Eye disease prediction from optical coherence tomography images with transfer learning. Commun Comput Informat Sci 2019;1000:104-14.
- [201] Zhang Q, Liu Z, Li J, Liu G. Identifying diabetic macular edema and other retinal diseases by optical coherence tomography image and multiscale deep learning. Diabetes, Metabolic Syndrome Obesity: Targets Therapy 2020;13:4787-800.
- [202] Suzuki A, Suzuki Y. Deep learning achieves perfect anomaly detection on 108, 308 retinal images including unlearned diseases. ArXiv 2020;abs/2001.05859. doi: 10.2139/ssrn.3581363. Preprint.
- [203] Chan GC, Kamble R, Müller H, Shah SA, Tang TB, Mé riaudeau F. Fusing results of several deep learning architectures for automatic classification of normal and diabetic macular edema in optical coherence tomography In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2018. p. 670-673.
- [204] de Moura J, Novo J, Ortega M. Deep feature analysis in a transfer learning-based approach for the automatic identification of diabetic macular edema. In: 2019 International Joint Conference on Neural Networks (IJCNN); 2019b. p. 1-8.
- [205] Wang D, Wang L. On oct image classification via deep learning. IEEE Photon J 2019;11(5).
- [206] Amaladevi S, Jacob G. Classification of retinal pathologies using convolutional neural network. Int J Adv Trends Comput Sci Eng 2020;9(3):3865-9.
- [207] Padmasini N, Umamaheswari R. Automated detection of multiple structural changes of diabetic macular oedema in sdoct retinal images through transfer learning in cnns. IET Image Process 2020;14(16).
- [208] Berrimi M, Moussaoui A. Deep learning for identifying and classifying retinal diseases. In: 2020 2nd International Conference on Computer and Information Sciences (ICCIS); 2020. p. 1-6.
- [209] Hwang DK, Chou YB, Lin TC, Yang HY, Kao ZK, Kao CL, et al. Optical coherence tomography-based diabetic macula edema screening with artificial intelligence. J Chinese Med Assoc 2020;83(11):1034-8.
- [210] Meng T, Wu C, Jia T, Jiang Y, Jia Z. Recombined convolutional neural network for recognition of macular disorders in sdoct images. In: 2018 37th Chinese control conference (CCC); 2018. p. 9362-9367.
- [211] Adel A, Soliman MM, Khalifa NEM, Mostafa K. Automatic classification of retinal eye diseases from optical coherence tomography using transfer learning. In: 2020 16th International Computer Engineering Conference (ICENCO); 2020. p. 37-42.
- [212] Singh A, Balaji J, Rasheed M, Jayakumar V, Raman R, Lakshminarayanan V. Evaluation of explainable deep learning methods for ophthalmic diagnosis. Clin Ophthalmol 2021;15:2573-81.
- [213] Wu Q, Zhang B, Hu Y, Liu B, Cao D, Yang D, et al. Detection of morphologic patterns of diabetic macular edema using a deep learning approach based on optical coherence tomography images. Retina (Philadelphia, Pa) 2021;41 (5):1110-7.
- [214] Wang P, Li JL, Ding H. Optical coherence tomography image for automatic classification of diabetic macular edema. Opt App 2021;50(4):567-77.
- [215] Hassan B, Qin S, Ahmed R, Hassan T, Taguri A, Hashmi S, et al. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on oct scans for clinical use in anti-vegf therapy. Comput Biol Med 2021;136.
- [216] Tuncer S, Çinar A, Firat M. Hybrid cnn based computeraided diagnosis system for choroidal neovascularization, diabetic macular edema, drusen disease detection from oct images. Traitement du Signal 2021;38(3):673-9.
- [217] Upadhyay P, Rastogi S, Kumar K. Coherent convolution neural network based retinal disease detection using optical coherence tomographic images. J King Saud Univ - Comput Informat Sci 2022.
- [218] Pranoto S, Hidayat H, Sudarsono S, Lukman M. Detection of diabetic macular edema in optical coherence tomography image using convolutional neural network. Lecture Notes Electr Eng 2021:746. LNEE:659-666.
- [219] Togaçar M, Ergen B, Tümen V. Use of dominant activations obtained by processing oct images with the cnns and slime mold method in retinal disease detection. Biocybernet Biomed Eng 2022;42(2):646-66.
- [220] Mezni I, Ben Slama A, Mbarki Z, Seddik H, Trabelsi H. Automated identification of sd-optical coherence tomography derived macular diseases by combining 3dblock-matching and deep learning techniques. Comput Methods Biomech Biomed Eng: Imag Visual 2021;9(6):660-9.
- [221] Alsaih K, Tang T, Mériaudeau F, Lemaitre G, Rastgoo M, Sidibé D. Classification of retinal cysts on sd-oct images using stacked auto-encoder. In: 2018 International Conference on Intelligent and Advanced System (ICIAS); 2018. p. 1-4.
- [222] De Fauw J, Ledsam J, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24 (9):1342-50.
- [223] Vahadane A, Joshi A, Madan K, Dastidar TR. Detection of diabetic macular edema in optical coherence tomography scans using patch based deep learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging; 2018. p. 1427-1430.
- [224] Hassan B, Hassan T, Li B, Ahmed R, Hassan O. Deep ensemble learning based objective grading of macular edema by extracting clinically significant findings from fused retinal imaging modalities. Sensors (Switzerland) 2019;19(13).
- [225] Li F, Chen H, Liu Z, Zhang XD, Jiang MS, Wu ZZ, et al. Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed Opt Exp 2019;10(12):6204-26.
- [226] Rasti R, Mehridehnavi A, Rabbani H, Hajizadeh F. Convolutional mixture of experts model: A comparative study on automatic macular diagnosis in retinal optical coherence tomography imaging. J Med Signals Sensors 2019;9(1):1-14.
- [227] Kim J, Tran L. Ensemble learning based on convolutional neural networks for the classification of retinal diseases from optical coherence tomography images. In: IEEE 33rd International Symposium on Computer-Based Medical Systems; 2020. p. 532-537.
- [228] Paul D, Tewari A, Ghosh S, Santosh K. Octx: Ensembled deep learning model to detect retinal disorders. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS); 2020. p. 526-531.
- [229] Alsaih K, Yusoff M, Faye I, Tang T, Meriaudeau F. Retinal fluid segmentation using ensembled 2-dimensionally and 2.5- dimensionally deep learning networks. IEEE Access 2020;8:152452-64.
- [230] Sanchez YD, Nieto B, Padilla FD, Perdomo O, Osorio FAG. Segmentation of retinal fluids and hyperreflective foci using deep learning approach in optical coherence tomography scans. In: 16th International Symposium on Medical Information Processing and Analysis; 2020. p. 136-143.
- [231] Lin A, Lee C, Blazes M, Lee A, Gorin M. Assessing the clinical utility of expanded macular octs using machine learning. Transl Vision Sci Technol 2021;10(6).
- [232] Liu X, Wang S, Cao J, Zhang Y, Wang M. Uncertainty-guided self-ensembling model for semi-supervised segmentation of multiclass retinal fluid in optical coherence tomography images. Int J Imag Syst Technol 2021;32(1):369-86.
- [233] Liu X, Cao J, Fu T, Pan Z, Hu W, Zhang K, et al. Semi-supervised automatic segmentation of layer and fluid region in retinal optical coherence tomography images using adversarial learning. IEEE Access 2019;7:3046-61.
- [234] Fang L, Yang L, Li S, Rabbani H, Liu Z, Peng Q, et al. Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning. J Biomed Opt 2017;22(6).
- [235] Fang L, Wang C, Li S, Rabbani H, Chen X, Liu Z. Attention to lesion: Lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans Med Imag 2019;38(8):1959-70.
- [236] Mishra S, Mandal B, Puhan N. Multi-level dual-attention based cnn for macular optical coherence tomography classification. IEEE Signal Process Lett 2019;26(12):1793-7.
- [237] Liu X, Liu D, Li B, Wang S. Deep learning based fluid segmentation in retinal optical coherence tomography images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2019b;11643 LNCS:337-345.
- [238] Farsiu S, Chiu S, O’Connell R, Folgar F, Yuan E, Izatt J, et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology 2014;121 (1):162-72.
- [239] Sun Y, Zhang H, Yao X. Automatic diagnosis of macular diseases from oct volume based on its two-dimensional feature map and convolutional neural network with attention mechanism. J Biomed Opt 2020;25(9).
- [240] Wang X, Tang F, Chen H, Luo L, Tang Z, Ran AR, et al. Ud-mil: Uncertainty-driven deep multiple instance learning for oct image classification. IEEE J Biomed Health Informat 2020;24 (12):3431-42.
- [241] Wu J, Zhang Y, Wang J, Zhao J, Ding D, Chen N. et al. Attennet: Deep attention based retinal disease classification in oct images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2020b;11962 LNCS:565-576.
- [242] Vellakani S, Pushbam I. An enhanced oct image captioning system to assist ophthalmologists in detecting and classifying eye diseases. J X-Ray Sci Technol 2020;28 (5):975-88.
- [243] Rasti R, Allingham M, Mettu P, Kavusi S, Govind K, Cousins S, et al. Deep learning-based single-shot prediction of differential effects of anti-vegf treatment in patients with diabetic macular edema. Biomed Opt Exp 2020;11 (2):1139-52.
- [244] Das V, Dandapat S, Bora P. A data-efficient approach for automated classification of oct images using generative adversarial network. IEEE Sensors Lett 2020;4(1).
- [245] He Y, Carass A, Solomon S, Saidha S, Calabresi P, Prince J. Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls. Data in Brief 2019;22:601-4.
- [246] Liu X, Bai Y, Cao J, Yao J, Zhang Y, Wang M. Joint disease classification and lesion segmentation via one-stage attention-based convolutional neural network in oct images. Biomed Signal Process Control 2021;71.
- [247] Liu X, Wang S, Zhang Y, Liu D, Hu W. Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning. Neurocomputing 2021;452:576-91.
- [248] Smitha A, Jidesh P. Detection of retinal disorders from oct images using generative adversarial networks. Multimedia Tools Appl 2022:1-23.
- [249] He X, Fang L, Rabbani H, Chen X, Liu Z. Retinal optical coherence tomography image classification with label smoothing generative adversarial network. Neurocomputing 2020;405:37-47.
- [250] Ghazal M, Al Khalil Y, Alhalabi M, Fraiwan L, El-Baz A. Early detection of diabetics using retinal oct images. In: El-Baz S., A., Suri S., J., editors. Diabetes and Retinopathy; vol. 2; chap. 9. Elsevier; 2020. p. 173-204.
- [251] Kumar D, Goyal A, Truhan A, Abrams G, Manwar R. Complementary capabilities of photoacoustic imaging to existing optical ocular imaging techniques. In: El-Baz S., A., Suri S., J., editors. Diabetes and Retinopathy; vol. 2; chap. 1. Elsevier; 2020. p. 1-17.
- [252] Markan A, Agarwal A, Arora A, Bazgain K, Rana V, Gupta V. Novel imaging biomarkers in diabetic retinopathy and diabetic macular edema. Therapeutic Adv Ophthalmol 2020;12:1-16.
- [253] Hafner J, Karst S, Schmidt-Erfurth U. Potential imaging biomarkers in the development and progression of diabetic retinopathy. book: Early events in diabetic retinopathy and intervention strategies IntechOpen 2018:9-36.
- [254] Ting D, Pasquale L, Peng L, Campbell J, Lee A, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. British J Ophthalmol 2019;103(2):167-75.
- [255] Ajaz A, Kumar H, Kumar D. A review of methods for automatic detection of macular edema. Biomed Signal Process Control 2021;69.
- [256] Rajesh I, Bharathi M, Reshmi B. A comprehensive review on automatic diagnosis of diabetic maculopathy in retinal fundus images. Commun Comput Informat Sci 2019;968:410-20.
- [257] Sengupta S, Singh A, Leopold H, Gulati T, Lakshminarayanan V. Ophthalmic diagnosis using deep learning with fundus images – a critical review. Artif Intell Med 2020;102.
- [258] Li T, Bo W, Hu C, Kang H, Liu H, Wang K, et al. Applications of deep learning in fundus images: A review. Medical Image Anal 2021;69.
- [259] Asiri N, Hussain M, Al Adel F, Alzaidi N. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artif Intell Med 2019;99.
- [260] Badar M, Haris M, Fatima A. Application of deep learning for retinal image analysis: A review. Comput Sci Rev 2020;35.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52dfede6-4a7b-4b2c-a26d-c39939e186ea