PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonelementary Notes on Elementary Events

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
X Polish-Czech Mathematical School (10 ; 04-07.06.2003 ; Poraj near Częstochowa, Poland)
Języki publikacji
EN
Abstrakty
EN
Our goal is to present simple examples illustrating the nature and role of elementary events and random variables in probability theory, both classical and operational (fuzzy). As stated in Płocki [10], in teaching probability we should concentrate on the construction of probability spaces and their properties, and not on the calculation of probability of various strange events (like hitting a bear if we can shoot three times, etc.). On a rather advanced level, Łoś [8] analyzed the constructions of probability spaces in the classical probability. J. Loś explained the nature and underscored the role of elementary events. Roughly, the events form a Boolean algebra, but some probability properties of the algebra depend on its representation via subsets and this is done via the choice of some fundamental subset of events and the choice of elementary events. Remember, choice! There are situations in which the classical probability model is not quite suitable (quantum physics, fuzzy models, c.f. Dvurečenskij and Pulmannová [3], Frič [5]), and I would like to present simple examples and simple models of such situations. In order to understand the generalizations, let me start with a well-known example of throwing two dice.
Twórcy
autor
  • Catholic University in Ružomberok, Námestie A. Hlinku 56, 034 01 Ružomberok
  • Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovak Republic
Bibliografia
  • [1] S. Bugajski, Statistical maps I. Basic properties, Math. Slovaca 51, 321-342, 2001.
  • [2] S. Bugajski, Statistical maps II. Operational random variables, Math. Slovaca 51, 343-361,2001.
  • [3] A. Dvurečenskij, S. Pulmannová, New Trends in Quantum Structures, Kluwer Academic Publ., Dordrecht, Ister Science, Bratislava. 2000.
  • [4] D. J. Foulis, M. K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24, 1331-1352, 1994.
  • [5] R. Frič, Duality: random variables versus observables, Annales Academiae Pedagogicae Cracoviensis, Studia Mathematica (in press).
  • [6] S. Gudder, Combinations of observables, Internat. J. Theoret. Phys. 31,695-704, 2000.
  • [7] F. Kôpka, F. Chovanec, D-posets, Math. Slovaca 44, 21-34, 1994.
  • [8] J. Łoś, Fields of events and their definition in the axiomatic treatment of probability, Studia Logica 9, 95-115 (Polish); 116-124 (Russian summary), 1960. 125-132 (English summary), 1960.
  • [9] M. Papčo, On measurable spaces and measurable maps, (Preprint}.
  • [10] A. Płocki, Pravděpodobnost kolem nás. Počet pravděpodobnosti v úlohách a problémech, Acta Universitatis Purkynianie 68, Studia Matematica IV, Ústí nad Labem, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52df8f83-323a-4b0a-91cb-ba0f3633e931
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.