PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Benefit Effect of Low Addition Yttrium on the Phase αMg and eutectic αMg+γ(Mg17Al12) in AZ91 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of a study of the effect of inoculation of yttrium on the microstructure of AZ91 alloy. The concentration of the inoculant was increased in samples in the range from 0.1% up to 0.6%. The influence of Y on the thermal effects resulting from the phase transformations occurring during the crystallisation at different inoculant concentrations were examined with the use of Derivative and Thermal Analysis (DTA). The microstructures of the samples were examined with the use of an optical microscope; and an image analysis with a statistical analysis were also carried out. Those analyses aimed at examining oh the effect of inoculation of the Y on the differences between the grain diameters of phase αMg and eutectic αMg+γ(Mg17Al12) in the prepared examined material as well as the average size of each type of grain by way of measuring their perimeters.
Twórcy
autor
  • Lodz University of Technology, Department of Material Engineering’s and Production Systems, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
  • Lodz University of Technology, Department of Material Engineering’s and Production Systems, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
  • Lodz University of Technology, Department of Material Engineering’s and Production Systems, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
autor
  • Lodz University of Technology, Department of Material Engineering’s and Production Systems, 1/15 Stefanowskiego Str., 90-924, Łódź, Poland
Bibliografia
  • [1] H. Dieringa et al., Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives, in: Orlov D., Joshi V., Solanki K., Neelameggham N. (Eds.) Magnesium Technology 2018. Cham. The Minerals, Metals & Materials Series (2018).
  • [2] T. Rzychoń, Stopy Mg-Al-Ca-Sr przeznaczone do odlewania grawitacyjnego do form piaskowych. Struktura, właściwości i mechanizmy umocnienia, Wydawnictwo Politechniki Śląskiej (2018).
  • [3] C. Dehghanian, M. Lotfpour, M. Emamy, J. Mater. Eng. Perform. (2019), https://doi.org/10.1007/s11665-019-03978-4.
  • [4] A. Dziadoń, Magnez i jego stopy, Wydawnictwo Politechniki Świętokrzyskiej (2012).
  • [5] G. Yuan, G. You, S. Bai, W. Guo, J. Alloy Compd. (2018), https://doi.org/10.1016/j.jallcom.2018.06.370.
  • [6] B. Mordike, T. Ebert, Mater. Sci. Eng. (2001), https://doi.org/10.1016/S0921-5093(00)01351-4.
  • [7] C. Rapiejko, B. Pisarek, T. Pacyniak, Arch. Metall. Mater. (2017), https://doi.org/10.1515/amm-2017-0324.
  • [8] W. Liu, B. Jinag, Q. Yang, J. Tao, B. Liu, F. Pan, Prog. Nat. Sci.-Mater. (2019): https://doi.org/10.1016/j.pnsc.2019.07.002.
  • [9] N. Stanford, R.K.W. Marceau, M.R. Barnett, Acta. Mater. (2014), http://dx.doi.org/10.1016/j.actamat.2014.09.022.
  • [10] J. Medina, P. Pérez, G. Garcés, P. Adeva, Mater. Charact. (2017), http://dx.doi.org/10.1016/j.matchar.2017.04.033.
  • [11] X. Wu, M. Chen, R. Qu, Q. Li, S. Guan, T. Jpn. I. Met. (2017), https://doi.org/10.2320/matertrans.M2016445.
  • [12] A. Afsharnaderi, M. Malekan, M. Emamy, J. R. Ghani, M. Lotfpour, J. Mater. Eng. Perform. (2019), https://doi.org/10.1007/s11665-019-04396-2.
  • [13] A.V. Koltygin, V.D. Belov, V.E. Bazhenov, (2013), https://doi.org/10.1134/S0036029513010060.
  • [14] R.C. Bonnah, Y. Fu, H. Hao, China Foundry (2019), https://doi.org/10.1007/s41230-019-9067-9.
  • [15] T.E. Quested, A.L. Greer, Acta Materialia. (2005), https://doi.org/10.1016/j.actamat.2005.06.018.
  • [16] Ch. Jun, Z. Qing, L. Quanan, Amer. Foundry Soc. (2018), https://doi.org/10.1007/s40962-018-0222-7.
  • [17] W. Huang, X. Yang, Y. Yang, T. Mukai, T. Sakai, J. Alloy Compd. (2018), https://doi.org/10.1016/j.jallcom.2019.01.269.
  • [18] G. Hu, B. Xing, F. Huang, M. Zhong, D. Zhang, J. Alloy Compd. (2016), http://dx.doi.org/10.1016/j.jallcom.2016.06.216.
  • [19] Z. Zhao, Q. Chen, F. Kang, D. Shu, J. Alloy Compd. (2009), https://doi.org/10.1016/j.jallcom.2009.04.059.
  • [20] X. Chen, L. Liu, F. Pan, Mater. Des. (2015), http://dx.doi.org/10.1016/j.matdes.2014.09.034.
  • [21] PN-EN 1753:2001. Magnesium and magnesium alloys. Magnesium alloy ingots and castings.
  • [22] C. Rapiejko, B. Pisarek, E. Czekaj, T. Pacyniak, Arch. Metall. Mater. (2014), https://doi.org/10.2478/amm-2014-0246.
  • [23] M. Król, T. Tański, G. Matula, P. Snopiński, A. E. Tomiczek, Arch. Metall. Mater. (2015), https://doi.org/10.1515/amm-2015-0478.
  • [24] A.R. Mirak, C.J. Davidson, J.A. Taylor, J. Magnes Alloy (2015), https://doi.org/10.1016/j.jma.2015.06.003.
  • [25] S. Liu, Y. Du, H. Xu, C. He, J. C. Schuster, J. Alloy Compd. (2006), https://doi.org/10.1016/j.jallcom.2005.06.078.
  • [26] J. Su, F. Guo, H. Cai, L. Liu, J. Phys. Chem. Solids. (2019), https://doi.org/10.1016/j.jpcs.2019.03.021.
  • [27] L. Liu et al., Materials (2017), https://doi.org/10.3390/ma10050477.
  • [28] A. Boby, K.K. Ravikumar, U.T.S. Pillai, B.C. Pai, Procedia Engineer. (2013), https://doi.org/10.1016/j.proeng.2013.03.226.
  • [29] E. Bo, T. Mathia, Patent: Method and apparatus for treating eutectic and eutectoid compositions, United States of America 4, 372 781, 1983
Uwagi
1. This work was realized within PO WER WSD financed by the National Centre for Research and Development, Poland. Project ID POWR.03.02.00-00-I042/16-00.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52ddf702-7162-4599-8b87-2e2251a2596a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.