PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Composite Lay-Up on the Stability of Channel-Section Profiles Weakened by Cut-Outs – A Numerical Investigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical study on the stability of composite channel-section profiles weakened by cut-outs. Profiles were made from carbon fibre-reinforced polymer (CFRP) laminates and subjected to compression load. Numerical analysis carried out in the Abaqus software allowed us to determine the value of the buckling load and the corresponding buckling form. Four different laminate lay-ups were chosen to study their effects on the buckling behaviour of the profiles. Obtained results help identify the best laminate lay-up to get the highest critical buckling load for perforated columns. The performed analysis shows that [45/-45/90/0]s and [90/-45/45/0]s composite lay-ups have the greatest impact on the buckling load. Moreover, the introduced perforation caused a change in the buckling form and a decrease in the critical load value.
Twórcy
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, I-56122 Pisa, Italy
Bibliografia
  • 1. Budarapu P.R., Yb S.S., Javvaji B., Mahapatra D.R. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front Struct Civ Eng. 2014; 8(2): 151–159.
  • 2. Kopecki T., Mazurek P., Lis T., Chodorowska D. Post-buckling deformation states of semi-monocoque cylindrical structures with large cut-outs under operating load conditions. Numerical analysis and experimental tests. EiN. 2016; 18(1): 16–24.
  • 3. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Rucka M., Sobczyk B., Wilde K. Modal properties identification of a novel sandwich footbridge – Comparison of measured dynamic response and FEA. Composites Part B: Engineering. 2018; 151: 245–255.
  • 4. Rawal S.P. Metal-matrix composites for space applications. JOM. 2001; 53(4): 14–17.
  • 5. Talreja R., Singh C.V. Damage and failure of composite materials. Cambridge; New York: Cambridge University Press; 2012. 304 s.
  • 6. Rozylo P., Falkowicz K. Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models. Composite Structures. 2021, 273:114298.
  • 7. Rozylo P., Wysmulski P. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM). Composite Structures. 2021, 262: 113597
  • 8. Li Z.M., Qiao P. Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression. Engineering Structures. 2015; 85: 277–292.
  • 9. Falkowicz K., Debski H., Teter A. Design solutions for improving the lowest buckling loads of a thin laminate plate with notch. 22nd International Conference on Computer Methods in Mechanics, CMM 2017. AIP Conference Proceedings. 2018, 1922, 080004.
  • 10. Paszkiewicz M., Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures. 2015; 93: 112–121.
  • 11. Falkowicz K., Ferdynus M., Rozylo P. Experimental and numerical analysis of stability and failure of compressed composite plates. Composite Structures. 2021; 263: 113657.
  • 12. Banat D., Mania R.J. Failure assessment of thin-walled FML profiles during buckling and postbuling response. Composites Part B: Engineering. 2017; 112: 278–289.
  • 13. Debski H., Rozylo P., Wysmulski P., Falkowicz K., Ferdynus M. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B: Engineering. 2021; 226: 109346.
  • 14. Rozylo P., Falkowicz K., Wysmulski P., Debski H., Pasnik J., Kral J. Experimental-numerical failure analysis of thin-walled composite columns using advanced damage models. Materials. 2021; 14(6): 1506.
  • 15. Rajan V.P., Zok F.W. Stress distributions in bluntlynotched ceramic composite laminates. Composites Part A: Applied Science and Manufacturing. 2014; 60: 15–23.
  • 16. Toubal L., Karama M., Lorrain B. Stress concentration in a circular hole in composite plate. Composite Structures. 2005; 68(1): 31–36.
  • 17. Falkowicz K., Debski H. Stability analysis of thin-walled composite plate in unsymmetrical configuration subjected to axial load. Thin-Walled Structures. 2021; 158: 107203.
  • 18. Falkowicz K., Debski H. The work of a compressed, composite plate in asymmetrical arrangement of layers. W Depok, Indonesia 2019, 020005. http://aip.scitation.org/doi/abs/10.1063/1.5092008
  • 19. Falkowicz K. Numerical analysis of behaviour of compressed thin-walled Z-profiles weakened by holes. Kulisz M., Szala M., Badurowicz M., Cel W., Chmielewska M., Czyż Z., i in., redactors. MATEC Web Conf. 2019; 252: 07010.
  • 20. Flexural Buckling Analysis of Thin Walled T Cross section beams with variable geometry. International Journal of Engineering Research. 2014; 3(3): 9.
  • 21. Khazaal D.S., AL-Khafaji H.M., Abdulsahib I.A. Buckling behavior of aluminum alloy thin-walled beam with holes under compression loading. JCO-ENG. 2020; 26(9): 137–154.
  • 22. Bin Kamarudin M.N., Mohamed Ali J.S., Aabid A., Ibrahim Y.E. Buckling analysis of a thin-walled structure using finite element method and design of experiments. Aerospace. 2022; 9(10): 541.
  • 23. Falkowicz K. Numerical Investigations of Perforated CFRP Z-Cross-Section Profiles, under Axial Compression. Materials. 2022; 15(19): 6874.
  • 24. Wysmulski P., Debski H., Falkowicz K., Rozylo P. The influence of load eccentricity on the behavior of thin-walled compressed composite structures. Composite Structures. 2019; 213: 98–107.
  • 25. Wysmulski P., Debski H. Stability analysis of composite columns under eccentric load. Appl Compos Mater. 2019; 26(2): 683–692.
  • 26. Jonak J., Karpiński R., Siegmund M., Wójcik A., Jonak K. Analysis of the rock failure cone size relative to the group effect from a triangular anchorage system. Materials. 2020; 13(20): 4657.
  • 27. Jonak J., Karpiński R., Wójcik A. Influence of the undercut anchor head angle on the propagation of the failure zone of the rock medium. Materials. 2021; 14(9): 2371.
  • 28. Jonak J., Karpiński R., Siegmund M., Machrowska A., Prostański D. Experimental verification of standard recommendations for estimating the load-carrying capacity of undercut anchors in rock material. Adv Sci Technol Res J. 2021; 15(1): 230–244.
  • 29. Tsai S.W., Wu E.M. A General Theory of Strength for Anisotropic Materials. 23.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52dca572-b315-4d5a-84aa-6ce720559527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.