PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power transfer analysis in a single phase dual active bridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of the power transfer between two DC circuit by use a single phase galvanically isolated dual active bridge - DAB. The analytical description of instantaneous values of the currents in both DC and in AC circuits of the DAB is done. The influence of the dead time as well as voltage drops across the transistors and diodes of the bridges is examined. The different relations between voltages of the DC circuits coupled through DAB and various phase shift ratios are considered. The analytical relations describing the average values of the currents in DC circuits are derived. These currents can be used to predict the power in both DC circuits and power losses generated in semiconductor devices of the converter. It is assumed that the voltage drops across these devices in conduction states are constant. The calculation of the transferred power as well as power losses and energy efficiency for the DAB converter power rated 5600 VA which is used to energy transfer between DC circuits 280 V and 51 V±20% is presented. The proposed relations and calculation results can be useful for preliminary evaluation of power losses generated in semiconductor devices and for design of the cooling system. Due to the high switching frequency of 100 kHz, the phase shift modulation for the control of DAB is used. To validate the theoretical investigations a few experimental results are presented.
Rocznik
Strony
809--828
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa, Poland
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa, Poland
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa, Poland
Bibliografia
  • [1] F. Blaabjerg, Z. Chen, and B.S. Kjaer, “Power electronics as efficient interface in dispersed power generation systems”, IEEE Trans. Power Electron. 19 (5), 1184-1194 (2004).
  • [2] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. Timbus, “Overview of control and grid synchronization for distributed power generation systems”, IEEE Trans. Ind. Electron. 19 (5), 1398-1409 (2006).
  • [3] R. De Doncer, D. Divan, and M. Kheraluwala, “A three-phase soft switched high-power-density DC/DC converter for highpower applications”, IEEE Trans. Ind. Appl. 27 (1), 63-73 (1991).
  • [4] S.P. Engel, N. Soltau, H. Stagge, and R.W. De Doncker, “Dynamic and balanced control of three-phase high-power dual- active bridge DC-DC converters in DC-grid applications”, IEEE Trans. Power Electron. 28 (4), 1880-1889 (2013).
  • [5] J. Dawidziuk, “Review and comparison of high efficiency high power boost DC/DC converters for photovoltaic applications”, Bull. Pol. Ac.: Tech. 59 (4), 499-506 (2012).
  • [6] B. Zhao, Q. Song, and W. Liu, “Efficiency characterization and optimization of isolated bidirectional DC - DC converter based on dual-phase-shift control for DC distribution application”, IEEE Trans. Power Electron. 28 (4), 1711-1727 (2013).
  • [7] M. Nowak, J. Hildebrandt, and P. Łuniewski, “Converters with AC transformer intermediate link suitable as interfaces for supercapacitor energy storage”, Proc. IEEE Power Electron.Spec. Conf. 5, 4067-4073 (2004).
  • [8] M. Yilmaz and P.T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles”, IEEE Trans. Power Electron. 28 (5), 2151-2169 (2013).
  • [9] R. Miskiewicz and A. Moradewicz, “Contactless power interface for plug-in electric vehicles in V2G systems”, Bull. Pol.Ac.: Tech. 59 (4), 561-568 (2012).
  • [10] F. Krismer and J. W. Kolar, “Efficiency - optimized high current dual active bridge converter for automotive applications”, IEEE Trans. on Industrial Electronics 59, 2745-2760 (2012).
  • [11] G.-J. Su and L. Tang, “A three-phase bidirectional DC-DC converter for automotive applications”, Proc. IEEE Ind. Appl.Soc. An. Meet. 1, 1-7 (2008).
  • [12] R.T. Naayagi, A.J. Forsyth, and R. Shuttleworth, “High - power bidirectional DC-DC converter for aerospace applications”, IEEE Trans. on Power Electronics 7, 2276-2287 (2012).
  • [13] R. Steigerwald, R. De Doncer, and M. Kheraluwala, “A comparison of high-power DC-DC soft-switched converter topologies”, IEEE Trans. Ind. Appl. 32, 1139-1145 (1996).
  • [14] X. Li and A.K.S. Bhat, “Analysis and design of high - frequency isolated dual - bridge series resonant DC/DC converter”, IEEE Trans. Power Electron. 25, 850-862 (2010).
  • [15] G. Ma, W. Qu, G. Tu, Y. Liu, N. Liang, and W. Li, “A zerovoltage switching bidirectional DC-DC converter with state analysis and soft switching - oriented design consideration”, IEEE Trans. Ind. Electron. 56, 2174-2184 (2009).
  • [16] G.G. Oggier, G.O. Garcia, and A.R. Oliva, “Switching control strategy to minimize dual active bridge converter losses”, IEEE Trans. Power Electron. 24, 1826-1838 (2009).
  • [17] F. Krismer and J.W. Kolar, “Closed form solution for minimum conduction loss modulation of DAB converters”, IEEE Trans. Power Electron. 27, 174-188 (2012).
  • [18] G.S. Dimitrakakis, E.C. Tatakis, and A.Ch. Nanakos, “A simple calorimetric setup for the accurate measurement of losses in power electronic converters”, 14th Eur. Conf. on Power Electronics and Applications, EPE‘2011 1, CD-ROM (2011).
  • [19] N.M.L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC Converter for a battery en-ergy storage system“, IEEE Trans. Power Electron. 27, 1237-1248 (2012).
  • [20] S. Inoue and H. Akagi, “A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system”, IEEE Trans. on Power Electronics, 22, 535-542 (2007).
  • [21] Y. Xie, J. Sun, and J.S. Freudenberg, “Power flow characterization of a bidirectional galvanically isolated high - power DC/DC converter over a wide operating range”, IEEE Trans.Ind. Electron. 25, 54-66 (2010).
  • [22] R. Barlik, J. Rąbkowski, and M. Nowak, “Investigations of transistor Schottky diode switch”, Int. Conf. Microtechnology and Thermal Problems in Electronics - MicroTherm 2007 1, 233-236 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52db0628-374a-4ba3-8be1-dbe4c4a80de2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.