PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Non-isothermal Decomposition Kinetics of 1-Amino-1,2,3-triazolium Nitrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal decomposition kinetics of 1-amino-1,2,3-triazolium nitrate (ATZ-NO3) was investigated by non-isothermal TG-DTG at various heating rates (2, 5, 10, 15, and 20 °C∙min-1). The results showed that the thermal decomposition of ATZ-NO3 consists of two mass-loss stages. The first mass-loss stage corresponds to the loss of nitrate anion and the substituent group, while the second stage corresponds to the splitting of the triazole ring. The kinetic triplets of the two stages were described by a three-step method. Firstly, the Kissinger and Ozawa methods were used to calculate the apparent activation energies (E) and pre-exponential factors (A) of the two decomposition stages. Secondly, two calculation methods (the Šatava-Šesták and Achar methods) were used to obtain several probable decomposition mechanism functions. Thirdly, three assessment methods (the Šatava, double-extrapolation, and the Popescu methods) were used to confirm the most probable decomposition mechanism functions. The reaction models for both stages are random-into-nuclear and random-growth mechanisms, with n = 3/2 for the first stage and n = 1/3, m = 3 for the second stage. The kinetic equations for the two decomposition stages of ATZ-NO3 may be expressed as [wzór]. Mathematical expressions for the kinetic compensation effect were derived.
Rocznik
Strony
99--114
Opis fizyczny
Bibliogr. 28 poz., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Sikder A.K., Sikder N., A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications, J. Hazard. Mater., 2004, 112(1-2), 1-15.
  • [2] Singh R.P., Gao H., Meshri D.T., Shreeve J.M., Nitrogen-rich Heterocycles, Struct. Bonding (Berlin), 2007, 125, 35-83.
  • [3] Singh R.P., Verma R.D., Meshri D.T., Shreeve J.M., Energetic Nitrogen-rich Salts and Ionic Liquids, Angew. Chem., Int. Ed., 2006, 45(22), 3584-3601.
  • [4] a) Swain P.K., Singh H., Tewari S.P., Energetic Ionic Salts Based on Nitrogen-rich Heterocycles: A Prospective Study, J. Mol. Liq., 2010, 151(2-3), 87-96; b) Steinhauser G., Klapötke T.M., Pyrotechnik mit dem “Ökosiegel”: eine chemische Herausforderung, Angew. Chem., 2008, 120(18), 3376-3394.
  • [5] Garg S., Gao H., Joo Y.H., Parrish D.A., Huang Y., Shreeve J.M., Taming of the Silver FOX, J. Am. Chem. Soc., 2010, 132(26), 8888-8890.
  • [6] Joo Y.H., Twamley B., Shreeve J.M., Carbonyl and Oxalyl Bridged Bis(1,5- Diaminotetrazole)-based Energetic Salts, Chem.-Eur. J., 2009, 15(36), 9097-9104.
  • [7] Klapötke T.M., Stierstorfer J., The CN7-Anion, J. Am. Chem. Soc., 2009, 131(3), 1122-1134.
  • [8] Klapötke T.M., Mayer P., Schulz A., Weigand J.J., 1,5-Diamino-4-methyltetrazolium Dinitramide, J. Am. Chem. Soc., 2005, 127(7), 2032-2033.
  • [9] Xue H., Gao Y., Twamley B., Shreeve J.M., New Energetic Salts Based on Nitrogen-containing Heterocycles, Chem. Mater., 2005, 17(1), 191-198.
  • [10] Zeng Z., Gao H., Twamley B., Shreeve J.M., Energetic Mono and Dibasic 5-Dinitromethyltetrazolates: Synthesis, Properties, and Particle Processing, J. Mater. Chem., 2007, 17(36), 3819-3826.
  • [11] Zhang Y., Gao H., Guo Y., Joo Y.H., Shreeve J.M., Hypergolic N,N-Dimethylhydrazinium Ionic Liquids, Chem.-Eur. J., 2010, 16(10), 3114-3120.
  • [12] Lin Q., Li Y., Wang Z., Liu W., Qi C., Pang S., Energetic Salts Based on 1-Amino- 1,2,3-triazole and 3-Methyl-1-amino-1,2,3-triazole, J. Mater. Chem., 2012, 22(2), 666-674.
  • [13] Pagoria P.F., Lee G.S., Mitchell A.R., Schmidt R.D., A Review of Energetic Materials Synthesis, Thermochim. Acta, 2002, 384(1), 187-204.
  • [14] Xue L., Zhao F., Xing X., Zhou Z., Wang K., Gao H., Yi J., Xu S., Hu R., Thermal Behavior of 1,2,3-Triazole Nitrate, J. Therm. Anal. Calorim., 2011, 104(3), 999- 1004.
  • [15] Hu R., Gao S., Zhao F., Shi Q., Zhang T., Zhang J., Thermoanalysis Kinetics (in Chinese), Science Press, Beijing, 2001.
  • [16] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706.
  • [17] Jiménez A., Berenguer V., Lépez J., Sánchez A., Thermal Degradation Study of Poly(vinyl chloride): Kinetic Analysis of Thermogravimetric Data, J. Appl. Polym. Sci., 1993, 50(9), 1565-1573.
  • [18] Škvára F., Šesták J., Computer Calculation of the Mechanism and Associated Kinetic Data Using a Non-isothermal Integral Method, J. Therm. Anal. Calorim., 1975, 8(3), 477-489.
  • [19] Achar B.N., Sharp J.H., Thermal Decomposition Kinetics of Some New Unsaturated Polyesters, Proceedings of the International Clay Conference, 1966.
  • [20] Sharp J.H., Wentworth S.A., Kinetic Analysis of Thermogravimetric Data, Anal. Chem., 1969, 41(14), 2060-2062.
  • [21] Šatava V., Mechanism and Kinetics from Non-isothermal TG Traces, Thermochim. Acta, 1971, 2(5), 423-428.
  • [22] Pan Y., Guan X., Feng Z., Li X., Yan Z., Study on the Kinetic Mechanism of the Dehydration Process of FeC2O4•2H2O Using Double Extrapolation (in Chinese), Chin. J. Chem. Phys., 1998, 14(12), 1088-1093.
  • [23] Pan Y., Guan X., Feng Z., Li X., Wu Y., A New Method Determining Mechanism Function of Solid State Reaction: The Non-isothermal Kinetic of Dehydration of Nickel(II) Oxalate Dihydrate in Solid State (in Chinese), Chin. J. Inorg. Chem., 1999, 15(2), 111-115.
  • [24] Popescu C., Integral Method to Analyze the Kinetics of Heterogeneous Reactions under Non-isothermal Conditions: A Variant on the Ozawa-Flynn-Wall Method, Thermochim. Acta, 1996, 285(2), 309-323.
  • [25] Zhang J.J., Ren N., Bai J.H., Non-isothermal Decomposition Reaction Kinetics of the Magnesium Oxalate Dihydrate, Chin. J. Chem., 2006, 24(3), 360-364.
  • [26] Garcìa-Pèrez M., Chaala A., Yang J., Roy C., Co-pyrolysis of Sugarcane Bagasse with Petroleum Residue. Part I: Thermogravimetric Analysis, Fuel, 2001, 80(9), 1245-1258.
  • [27] Starink M.J., A New Method for the Derivation of Activation Energies from Experiments Performed at Constant Heating Rate, Thermochim. Acta, 1996, 288(1-2), 97-104.
  • [28] Zsako J., A New Method on Thermal Kinetics, J. Therm. Anal., 1976, 9, 101-109.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52da3cf3-efbf-4b2c-9966-df88b54deba9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.