Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study aimed to examine the use of Geomagnetic Anomaly Detection (GAD) to locate the buried ferromagnetic pipeline defects without exposing them. However, the accuracy of GAD is limited by the background noise. In the present work, we propose an approximate entropy noise suppression (AENS) method based on Variational Mode Decomposition (VMD) for detection of pipeline defects. The proposed method is capable of reconstructing the magnetic field signals and extracting weak anomaly signals that are submerged in the background noise, which was employed to construct an effective detector of anomalous signals. The internal parameters of VMD were optimized by the Scale–Space algorithm, and their anti-noise performance was compared. The results show that the proposed method can remove the background noise in high-noise background geomagnetic field environments. Experiments were carried out in our laboratory and evaluation results of inspection data were analysed; the feasibility of GAD is validated when used in the application to detection of buried pipeline defects.
Czasopismo
Rocznik
Tom
Strony
739--755
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab., wzory
Twórcy
autor
- Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
- Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
- Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
- Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
- Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
Bibliografia
- [1] Li, Z., Jarvis, R., Nagy, P. B., Dixon, S., Cawley, P. (2017). Experimental and simulation methods to study the Magnetic Tomography Method (MTM) for pipe defect detection. NDT&E Int., 92, 59-66.
- [2] Xu, X., Liu, M., Zhang, Z., Jia, Y. (2014). A Novel High Sensitivity Sensor for Remote Field Eddy Current Non-Destructive Testing Based on Orthogonal Magnetic Field. Sensors, 14(12), 24098-24115.
- [3] Vanaei, H. R., Eslami, A., Egbewande, A. (2017). A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models. International Journal of Pressure Vessels and Piping, 149, 43-54.
- [4] Quarini, J., Shire, S. (2007). A Review of Fluid-Driven Pipeline Pigs and their Applications. Proc. Inst. Mech. Eng., Part E, 221(1), 1-10.
- [5] Karami, M. (2012). Review of Corrosion Role in Gas Pipeline and Some Methods for Preventing It. J. Pressure Vessel Technol., 134(5), 054501.
- [6] Pan, S., Xu, Z., Li, D., Lu, D. (2018). Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology. Sensors, 18(11), 3628.
- [7] Feng, Q., Li, R., Nie, B., Liu, S., Zhao, L., Zhang, H. (2016). Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection. Sensors, 17(12), 50.
- [8] Liu, B., He, L., Zhang, H., Cao, Y., Fernandes, H. (2017). The axial crack testing model for long distance oil-gas pipeline based on magnetic flux leakage internal inspection method. Measurement, 103, 275-282.
- [9] Layouni, M., Hamdi, M. S., Tahar, S. (2017). Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning. Appl Soft Comput., 52, 247-261.
- [10] Li, Y., Yan, B., Li, D., Li, Y., Zhou, D. (2016). Gradient-field pulsed eddy current probes for imaging of hidden corrosion in conductive structures. Sens. Actuators, A, 238, 251-265.
- [11] Feng, B., Ribeiro, A., Rocha, T., Ramos, H. (2018). Comparison of Inspecting Non-Ferromagnetic and Ferromagnetic Metals Using Velocity Induced Eddy Current Probe. Sensors, 18(10), 3199.
- [12] Lowe, M.J.S., Alleyne, D. N., Cawley, P. (1998). Defect detection in pipes using guided waves. Ultrasonics, 36(1–5), 147-154.
- [13] Alleyne, D. N., Pavlakovic, B., Lowe, M.J.S., Cawley, P. (2004). Rapid, Long Range Inspection of Chemical Plant Pipework Using Guided Waves. Key Eng. Mater., 270-273, 434-441.
- [14] Honarvar, F., Salehi, F., Safavi, V., Mokhtari, A., Sinclair, A. N. (2013). Ultrasonic monitoring of erosion/corrosion thinning rates in industrial piping systems. Ultrasonics, 53(7), 1251-1258.
- [15] Hu, B., Yu, R., Liu, J. (2016). Experimental study on the corrosion testing of a buried metal pipeline by transient electromagnetic method. Anti-Corros. Methods Mater., 63(4), 262-268.
- [16] Dubov, A. A. (1997). A study of metal properties using the method of magnetic memory. Met. Sci. Heat Treat., 39(9), 401-405.
- [17] Jiles, D. C. (1999). Theory of the magnetomechanical effect. J. Phys. D. Appl. Phys., 32(15), 1945-1945.
- [18] Dubov, A., Kolokolnikov, S. (2013). The metal magnetic memory method application for online monitoring of damage development in steel pipes and welded joints specimens. Weld. World, 57(1), 123-136.
- [19] Lin, S.,Wang,W., Zhao, C., Feng, Z., Bi, W., Jiang, X. (2011). Application of Metal Magnetic Memory Method in Long-Distance Oil and Gas Pipeline Defects Detection. ICPTT.
- [20] Hu, B., Li, L., Chen, X., Zhong, L. (2010). Study on the influencing factors of magnetic memory method. Int J Appl Electrom., 33(3-4), 1351-1357.
- [21] Augustyniak, M., Usarek, Z. (2015). Discussion of Derivability of Local Residual Stress Level from Magnetic Stray Field Measurement. J. Nondestruct Eval., 34(3).
- [22] Sheinker, A., Moldwin, M. B. (2016). Magnetic anomaly detection (MAD) of ferromagnetic pipelines using principal component analysis (PCA). Meas. Sci. Technol., 27(4), 045104.
- [23] Liu, Z., Pang, H., Pan, M., Wan, C. (2016). Calibration and Compensation of Geomagnetic Vector Measurement System and Improvement of Magnetic Anomaly Detection. IEEE Geosci Remote S., 1-5.
- [24] Birsan, M. (2011). Recursive Bayesian Method for Magnetic Dipole Tracking With a Tensor Gradiometer. IEEE Trans. Magn., 47(2), 409-415.
- [25] Zalevsky, Z., Bregman, Y., Salomonski, N., Zafrir, H. (2012). Resolution Enhanced Magnetic Sensing System for Wide Coverage Real Time UXO Detection. J. Appl. Geophys., 84, 70-76.
- [26] Eppelbaum, L. V. (2011). Study of magnetic anomalies over archaeological targets in urban environments. Phys. Chem. Earth. Parts A/B/C, 36(16), 1318-1330.
- [27] Sheinker, A., Frumkis, L., Ginzburg, B., Salomonski, N., Kaplan, B.-Z. (2009). Magnetic Anomaly Detection Using a Three-Axis Magnetometer. IEEE Trans. Magn., 45(1), 160-167.
- [28] Liao, K., Yao, Q., Zhang, C. (2011). Principle and Technical Characteristics of Non-Contact Magnetic Tomography Method Inspection for Oil and Gas Pipeline. ICPTT, 2011.
- [29] Kolesnikov, I. (2014). Magnetic Tomography Method (MTM) &ndash A Remote Non-destructive Inspection Technology for Buried and Sub Sea Pipelines. OTC Arctic Technology Conference.
- [30] Sheinker, A., Ginzburg, B., Salomonski, N., Dickstein, P. A., Frumkis, L., Kaplan, B.-Z. (2012). Magnetic Anomaly Detection Using High-Order Crossing Method. IEEE T Geosci. Remote, 50(4), 1095-1103.
- [31] Sheinker, A., Salomonski, N., Ginzburg, B., Frumkis, L., Kaplan, B.-Z. (2008). Magnetic anomaly detection using entropy filter. Meas. Sci. Technol., 19(4), 045205.
- [32] Wan, C., Pan, M., Zhang, Q., Wu, F., Pan, L., Sun, X. (2018). Magnetic anomaly detection based on stochastic resonance. Sens. Actuators, A, 278, 11-17.
- [33] Li, C., Chen, C., Liao, K. (2015). A quantitative study of signal characteristics of non-contact pipeline magnetic testing. Insight - Non-Destructive Testing and Condition Monitoring, 57(6), 324-330.
- [34] Jarvis, R., Cawley, P., Nagy, P. B. (2017). Performance evaluation of a magnetic field measurement NDE technique using a model assisted Probability of Detection framework. NDT&E Int., 91, 61-70.
- [35] Guo, Z., Liu, D., Pan, Q., Zhang, Y., Li, Y., Wang, Z. (2015). Vertical magnetic field and its analytic signal applicability in oil field underground pipeline detection. J. Geophys. Eng., 12(3), 340-350.
- [36] Hirota, M., Furuse, T., Ebana, K., Kubo, H., Tsushima, K., Inaba, T., Shima, A., Fujinuma, M., Tojyo, N. (2001). Magnetic detection of a surface ship by an airborne LTS SQUID MAD. IEEE Trans. Appl. Supercon., 11(1), 884-887.
- [37] Dragomiretskiy, K., Zosso, D. (2014). Variational Mode Decomposition. IEEE Trans. Signal Proces., 62(3), 531-544.
- [38] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London, Ser. A, 454 (1971), 903-995.
- [39] Mert, A. (2016). ECG feature extraction based on the bandwidth properties of variational mode decomposition. Physiol. Meas., 37(4), 530-543.
- [40] Ma, W., Yin, S., Jiang, C., Zhang, Y. (2017). Variational mode decomposition denoising combined with the Hausdorff distance. Rev. Sci. Instrum., 88(3), 035109.
- [41] Gao, Z.,Wang, X., Lin, J., Liao, Y. (2017). Online evaluation of metal burn degrees based on acoustic emission and variational mode decomposition. Measurement, 103, 302-310.
- [42] Gilles, J., Heal, K. (2014). A parameterless scale-space approach to find meaningful modes in histograms - Application to image and spectrum segmentation. Int. J. Wavelets Multi., 12(06), 1450044.
- [43] Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert. Syst. Appl., 36(2), 2027-2036.
- [44] Wang, Y., Markert, R. (2016). Filter bank property of variational mode decomposition and its applications. Signal Process., 120, 509-521.
- [45] Sheinker, A., Shkalim, A., Salomonski, N., Ginzburg, B., Frumkis, L., Kaplan, B.-Z. (2007). Processing of a scalar magnetometer signal contaminated by 1/ f α noise. Sens. Actuators, A, 138(1), 105-111.
Uwagi
EN
This work is supported by the National Key Research and Development Program of China (project number: 2017YFC0805005-1), the Collaborative Innovation Project of Chaoyang District Beijing China (project number: CYXC1709), and the Science and Technology Program of Beijing Municipal Education Commission (project number: KZ201810005009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52d8a75e-e998-490a-afba-0a00e16cd581