PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of pH and time on hydrodynamic properties of dodecylamine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas holdup and froth height in the presence of dodecylamine (DDA, pKa = 10.63) are reported at three pH values. The results revealed a strong time effect for DDA: stability was reached at pH 3; not at natural pH, for example, gas holdup declining to the water only value; and at pH 11, while stability was reached quickly gas holdup was now less than in water alone indicating coalescence. In the first two cases, the time effect is attributed to loss of amine from the system as molecular amine, observed at natural pH as precipitates on the column wall. An argument for precipitation at pH < pKa is presented. At pH 11, coalescence is attributed to the oily nature of the molecular amine present as colloidal aggregates. Noting a difference in literature steady state gas holdup data at natural pH, it is speculated that varying steady states can be reached that corresponds to different levels of amine loss.
Słowa kluczowe
Rocznik
Strony
1237--1244
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • McGill University
autor
  • McGill University
autor
  • McGill University
Bibliografia
  • ALVAREZ-SILVA, M., WIESE, J., O’CONNOR, C.T. 2014. An investigation into the role of froth height and depressant dosage in the recovery of chromite in the flotation of UG2 ore using a laboratory column, Minerals Engineering, 55, 125131.
  • ATRAFI, A., GOMEZ, C.O., FINCH, J. A., PAWLIK, M. 2012. Frothing behavior of aqueous solutions of oleic acid, Minerals Engineering, 36–38:138-144.
  • AZGOMI, F, GOMEZ, C.O, FINCH, J.A. 2009. Frother persistence: A measure using gas holdup, Mineral Engineering, 22(9–10), 874-878.
  • BURCIK, E.J., VAUGHN, C.R. 1951. The effect of pH on the rate of surface tension lowering, Journal of Colloid Science, 6(6), 522-527.
  • CAPPUCCITTI, F., FINCH, J.A. 2008. Development of new frothers through hydrodynamic characterization, Minerals Engineering, 21(12–14), 944-948.
  • CASTRO, S.H., VURDELA, R.M., LASKOWSKI J.S. 1986. The surface association and precipitation of surfactant species in alkaline dodecylamine hydrochloride solutions, Colloids and Surfaces, 21, 87-100.
  • CASTRO, S., MIRANDA, C., TOLEDO, P., LASKOWSKI, J.S. 2013. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater, International Journal of Mineral Processing, 124, 8-14.
  • CHO, Y.S.; LASKOWSKI, J.S. 2002. Effect of flotation frothers on bubble size and foam Stability. International Journal of Mineral Processing, 64 (2–3), 69–80.
  • COCA-PRADOS, J., GUTIÉTTEZ-CERVELLÓ, G. 2010. Water Purification and Management, Springer. pp: 27.
  • CORONA-ARROYO, M. A., LÓPEZ-VALDIVIESI, A., LASKOWSKI, J.S., ENCINAS-OROPESA, A. 2015. Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column, Minerals Engineering, 81,109-115.
  • FINCH, J.A., DOBBY, G.S., 1990. Column Flotation. Pergamon Press, Oxford, UK.
  • FINCH, J.A., SMITH, G.W 1972. Dynamic surface tension of alkaline dodecylamine acetate solutions in oxide flotation, Trans. Inst. Min. Met. Sec C, C213-C218.
  • FINCH, J.A., SMITH, G.W 1973. Dynamic surface tension of alkaline dodecylamine solutions, Journal of Colloid and Interface Science, 45(1), 81-91.
  • GOMEZ, C., CASTILLO, P., ALVAREZ, J. 2014. A frother characterization technique using a lab mechanical flotation cell, Proceedings of XXVII International Mineral Processing Congress (IMPC). pp: 1-12.
  • GÉLINAS, S., FINCH, J.A.2007. Frother analysis: Some plant experiences, Minerals Engineering, 20(14), 1303-1308.
  • HARRIS, C.C., 1976. Flotation machines. In: Fuerstenau, M.C. (Ed.), Flotation. A.M. Gaudin Memorial Volume, vol. 2. AIME, New York, NY, USA, pp. 753-815 (Chapter 27).
  • IWASAKI, I., COOKE, S.R.B., COLOMBO, A.F. 1960. Flotation characteristics of goethite. Report of Investigation 5593 (US Bur. Min.).
  • KLASSEN, V.I., MOKOROUSOV, V.A. 1963. An Introduction to the Theory of Flotation, London, Butterworths (Publisher).
  • LAI, R.W.M., SMITH, R.W. 1966. On the relationship between contact angle and flotation behaviour, Trams. Am. Inst. Min. Met. 235, 413-418.
  • LASKOWSKI, J.S., 1998. Frothers and frothing. In: Laskowski, J.S., Woodburn, E.T. (Eds.), Frothing in Flotation II. Gordon and Breach Science Publishers, Amsterdam, Netherlands.
  • LASKOWSKI, J.S. 2003. Fundamental properties of flotation frothers. In Proceedings of the 22nd International Mineral Processing Congress, Cape Town, South Africa, pp. 788–797.
  • MELO, F., LASKOWSKI, J.S. 2007. Effect of frothers and solid particles on the rate of water transfer to froth, International Journal of Mineral Processing, 84(1–4), 33-40.
  • MOYO, P., GOMEZ, C.O., FINCH, J.A. 2007. Characterizing frothers using water carrying rate, Canadian Metallurgical Quarterly, 46 (3), 215-220.
  • NESSET, J. E., HERNANDEZ-AGUILAR, J. R., ACUNA, C., GOMEZ, C. O., FINCH, J. A. 2006. Some gas dispersion characteristics of mechanical flotation machines, Minerals Engineering, 19(6–8), 807-815.
  • PUGH, R.J. 1986. The role of the solution chemistry of dodecylamine and oleic acid collectors in the flotation of fluorite, Colloids and Surfaces, 18(1), 19-41.
  • RAO, K.H., FORSSBERG, K.S.E., 2007. Chemistry of iron oxide flotation. In: Fuerstenau, M.C., et al., (Eds.), Froth Flotation: A Century of Innovation. SME, Littleton, CO, USA, pp. 498-513.
  • RAVICHANDRAN, V., ESWARAIAH, C., SAKTHIVEL, R., BISWAL, S.K., MANISANKAR, P. 2013. Gas dispersion characteristics of flotation reagents, Powder Technology, 235, 329-335.
  • ROSS, S. 1950. Inhibition of foaming II: A mechanism for the rupture of liquid films by antifoaming agents, The Journal of Physical Chemistry, 54(3), 429-436.
  • SOMASUNDARAN, P., WANG, D. 2006. In: Wills, B.A. (Ed.), Solution Chemistry: Minerals and Reagents, vol. 17. Elsevier, Amsterdam, New York, NY, USA (Developments in Mineral Processing Series).
  • STEWART, M., ARNOLD, K. 2009. Emulsions and Oil Treating Equipment: Selection, Sizing and Troubleshooting, Elsevier. pp: 141.
  • TAN, S.N. PUGH, R.J., FORNASIERO, D., SEDEY, R., RALSTON, J. 2005. Foaming of polypropylene glycols and glycol/MIBC mixtures, Minerals Engineering, 18(2), 179-188.
  • WILLS, B.A., FINCH, J.A. 2016. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. 8th Edn. Elsevier, Amsterdam.
  • YOON, R., YORDAN, J. 1986. Zeta-potential measurements on microbubbles generated using various surfactants, Journal of Colloid and Interface Science, 113(2), 430-438.
  • ZHANG, W., NESSET, J. E., FINCH, J. A. 2010. Water recovery and bubble surface area flux in flotation, Canadian Metallurgical Quarterly, 49(4), 353-362.
  • ZHOU, X., JORDENS, A., CAPPUCCITTI, F., FINCH, J.A., WATERS, K.E. 2016. Gas dispersion properties of collector/frother blends, Minerals Engineering, 96–97, 20-25.
  • ZHOU, X., TAN, Y.H., FINCH, J.A. 2018. Frothing properties of amine/frother combinations, Journal of Mining, Metallurgy and Exploration (in press).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52d4ae78-3968-4574-b10b-bf8289b7ddaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.