PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An energy self-sufficient underwater profiling buoy powered by ocean thermal energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unmanned underwater vehicles play an important role in ocean observation and exploration; however, they do not have long endurance due to energy limitations. This paper proposes an energy self-sufficient underwater profiling buoy that uses ocean thermal energy for buoyancy propulsion and as a power supply, to enable long-term ocean observations. Based on the principle of operation of the proposed buoy, an energy balance model is established that is used to calculate the energy captured by the heat exchangers and the energy consumption of the devices on board. The energy self-sufficiency rate is defined as an indicator for evaluating the impact of the key configuration parameters of the buoy on the energy self-sufficiency performance, which depends on the diving speed, diving depth, and system pressure of the accumulator. In addition, a buoyancy compensation unit with two accumulators is installed on the buoy to compensate for the impact of variations in seawater density on the buoyancy propulsion performance and to overcome buoyancy loss. When the diving speed of the buoy is around 0.24 m/s and the diving depth is above 900 m, the accumulator has an initial pressure of 10 MPa, a driving pressure of 11.1–17.9 MPa, and a charging pressure of 20 MPa, and the energy self-sufficiency rate of the buoy exceeds 100%. This work provides theoretical guidance for realising energy self-sufficiency for other unmanned underwater vehicles.
Rocznik
Tom
Strony
43--58
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Mechamism Theory and Equipment Design, Ministry of Education. Tianjin University, China
autor
  • Key Laboratory of Mechamism Theory and Equipment Design, Ministry of Education. Tianjin University, China
autor
  • Key Laboratory of Mechamism Theory and Equipment Design, Ministry of Education. Tianjin University, China
  • Key Laboratory of Mechamism Theory and Equipment Design, Ministry of Education. Tianjin University, China
Bibliografia
  • 1. Petersen S, Kratschell A, Augustin N, Jamieson J, Hein JR, Hannington MD. News from the seabed—Geological characteristics and resource potential of deep-sea mineral resources. Marine Policy. 2016, 70:175–187.
  • 2. Bakun A, Beyer J, Pauly D, Pope JG, Sharp GD. Ocean sciences in relation to living resources. Can J Fish Aquat Sci. 1982, 39:1059–1070.
  • 3. Oki T, Kanae S. Global hydrological cycles and world water resources. Science. 2006, 313:1068–1072.
  • 4. Wang X, Shang J, Luo Z, Tang L, Zhang X, Li J. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renew and Sustain Energy Reviews. 2012, 16:1958–1970. https://doi.org/10.1016/j.rser.2011.12.016.
  • 5. Li B, Yang Y, Zhang L, et al. Research on sailing range of thermal-electric hybrid propulsion underwater glider and comparative sea trial based on energy consumption. Applied Ocean Research. 2021, 114:102807.
  • 6. Zhang, H, Liu C, Yang Y, Wang S. Ocean thermal Energy utilization process in underwater vehicles: Modelling, temperature boundary analysis, and sea trial. International Journal of Energy Research. 2020, 44(4): 2966–2983.
  • 7. Zheng C, Jing P. Wind energy resources assessment in global ocean. Journal of Natural Resources. 2012, 27(3): 364-371.
  • 8. Townsend N C, Shenoi R A. Feasibility study of a new Energy scavenging system for an autonomous underwater vehicle. Autonomous Robots. 2016, 40:973–985.
  • 9. Crimmins D M, Patty C T, Beliard M A, Baker J, Jalbert J C, Komerska R J, et al. Long-endurance test results of the solarpowered AUV system. Ocean. 2006, 2006:1–5.
  • 10. Uihlein A, Magagna D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew and Sustain Energy Reviews. 2016, 58:1070–1081.
  • 11. Wang S, Duan M. Study of continuous seawater temperaturę measurement at different depths. 6th International Symposium on Test and Measurement (ISTM), Dalian, Peoples R China, 2005.
  • 12. Jones C. Slocum glider persistent oceanography. IEEE/OES Autonomous Underwater Vehicles Conference (AUV), Southampton, England, 2012.
  • 13. Valdez T, Chao Y, Davis R E, et al. A self-powered fastsampling profiling float in support of a mesoscale ocean observing system in the Western North Pacific. AGU Fall Meeting Abstracts, 2012.
  • 14. Mahdi J M, Lohrasbi S, Nsofor E C. Hybrid heat transfer enhancement for latent heat thermal energy storage systems: A review. Int J Heat Mass Transf. 2019, 137:630–649. https://doi.org/10.1016/j. ijhea- tmasstransfer.2019.03.111.
  • 15. Carneiro J F, de Almeida F G. Model of a thermal driven volumetric pump for energy harvesting in an underwater glider. Energy. 2016. 112:28–42.
  • 16. Wang G, Ha D, Wang K. Harvesting environmental thermal energy using solid-liquid phase change materials. J Intell Mater Syst Struct. 2018, 29:1632–1648. https://doi.org/10.1177/1045389X177427 33.
  • 17. Wang G, Ha D, Wang K. A scalable environmental thermal energy harvester based on solid/liquid phase-change materials. Applied Energy, 2019, 250:1468-1480. https:// doi.org/10.1016/j.apenergy. 2019. 05.100.
  • 18. Wang G, Yang Y, Wang S, Zhang H, Wang Y. Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle. Applied Energy, 2019, 248:475–488. https: //doi.org/10.1016/j. apenergy.2019.04.146.
  • 19. Jones J, Chao Y, Valdez T. Phase change material thermal power generator. US Patent 7,987,674, 2011-8-2.
  • 20. Kong Q, Ma J, Xia D. Numerical and experimental study of the phase change process for underwater glider propeller by ocean thermal energy. Renew Energy. 2010, 35:771–779. https://doi. org/10.1016/j.renene.2009.10.017.
  • 21. Abeywickrama H V, Jayawickrama B, He Y and Dutkiewicz E. Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance. IEEE Access. 2018, 6:58383–58394.
  • 22. Chen Z, Yang X. Research on energy management of paralel hybrid UAVs. Power Technology. 2022, 46(09):1066–1070.
  • 23. Tian M, Zhao L. Parametric Analysis of Power-energy Balance Calculation of Solar UAV. Aircraft Design, 2020, 40 (05):24–27.
  • 24. Li C, Deng S, Zhao G, Shi J. Research on energy system for near space aerocraft. Power Technology. 2015, 39(09):1941–1943.
  • 25. Karabetsky D, Sineglazov V and Ieee. Path Planning for Solar Rechargeable Aircraft. 6th IEEE International Conference Methods and Systems of Navigation and Motion Control (MSNMC) Kyiv, UKRAINE. 2020, Oct 20–23, pp. 126–128.
  • 26. He Z. Path planning of solar unmanned aerial vehicle based on energy management. Electronic Technology & Software Engineering. 2022, 222(04):146–150.
  • 27. Gao M, Yu W, Wang S, et al. Multidimensional coupling modeling of solar unmanned aerial vehicle energy system. Acta Aeronautica & Astronautica Sinica. 2021, 42(07):398–413.
  • 28. Kaplan, A, Uhing P, Kingry N, Dai R. Integrated path planning and power management for solar-powered unmanned ground vehicles. IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, 2015.
  • 29. Yang Y, Liu Y, Wang Y, Zhang H, Zhang L. Dynamic modeling and motion control strategy for deep-sea hybriddriven underwater gliders considering hull deformation and seawater density variation. Ocean. Eng. 2017, 143:66–78.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52d11362-baf3-491a-8604-79e6521b06d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.