PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tuning rules for industrial use of the second-order Reduced Active Disturbance Rejection Controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, problem of proper tuning of second-order Reduced Active Disturbance Rejection Controller (RADRC2) is considered in application for industrial processes with significant (but not dominant) delay time. For First-Order plus Delay Time (FOPDT) and Second-Order plus Delay Time (SOPDT) processes, tuning rules are derived to provide minimal Integral Absolute Error (IAE) assuming robustness defined by gain and phase margins. Derivation was made using optimization procedure based on D-partition method. The paper also shows results of comprehensive simulation validation based on examplary benchmark processes of more complex dynamics as well as final practical validation. Comparison with PID controller shows that RADRC2 tuned by the proposed rules can be practical alternative for industrial control applications.
Rocznik
Strony
701--719
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Silesian University of Technology, Department of Automatic Control and Robotics, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Department of Automatic Control and Robotics, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Department of Automatic Control and Robotics, ul. Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Ackermann: The Parameter Space Approach, Springer, London 2002.
  • [2] K. J. Åström and T. Hägglund: Benchmark Systems for PID Control, IFACProc., 33(4) (2000), 165–166.
  • [3] X. Chen, D. Li, Z. Gao, and C. Wang: Tuning method for second-order active disturbance rejection control, Proc 30th Chinese Control Conf. (2011), 6322–6327.
  • [4] K. L. Chien: On the automatic control of generalized passive systems, Trans ASME, 74(1972), 175–185.
  • [5] Z. Gao, Y. Huang, and J. Han: An alternative paradigm for control system sign, Proceedings of the IEEE Conference on Decision and Control, 5(2001), 4578–4585.
  • [6] Z. Gao: Scaling and bandwidth-parametrization based controller tuning, Proceedings of the 2003 American Control Conference, 6(2003), 4989–4996.
  • [7] G. Herbst: Practical Active Disturbance Rejection Control: Bumpless Transfer, Rate Limitation, and Incremental Algorithm, IEEE Transactionson Industrial Electronics, 63(3), (2016), 1754–1762.
  • [8] Y. Huang and W. Xue: Active disturbance rejection control: Methodology and theoretical analysis, ISA Transactions, 53(4), (2014), 963–976.
  • [9] R. Madoński and P. Herman: Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, 56(2015) 18–27.
  • [10] R. Madonski, M. Nowicki, and P. Herman: Application of active disturbance rejection controller to water supply system, Proceedings of the 33rd Chinese Control Conference (2014), 4401–4405.
  • [11] P. Nowak and J. Czeczot: Practical verification of active disturbance rejection controller for the pneumatic setup, 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), (2017), pp. 19–24.
  • [12] P. Nowak, K. Stebel, T. Klopot, J. Czeczot, M. Fratczak and P. Laszczyk: Flexible function block for industrial applications of active disturbance rejection controller, Archives of Control Science, 28(3), (2018), 349–400.
  • [13] P. Nowak, J. Czeczot, and T. Klopot: Robust tuning of a first order reduced Active Disturbance Rejection Controller, Control Engineering Practice, 74(2018), 44–57.
  • [14] D. Siljak: Generalization of the parameter plane method, IEEE Transactions on Automatic Control, 11(1), (1966), 63–70.
  • [15] S. Skogestad and C. Grimholt: The SIMC method for smooth PID controller tuning. PID Control in the Third Millennium, Advances in Industrial Control (2012) 147–175.
  • [16] L. Sun, D. Li, K. Hu, K. Y. Lee, and F. Pan: On Tuning and Practical Implementation of Active Disturbance Rejection Controller: A Case Study from a Regenerative Heater in a 1000 MW Power Plant, Industrial and Engineering Chemistry Research, 55(23), (2016), 6686–6695.
  • [17] R. Vilanova: PID controller tuning rules for robust step response of first-order-plus-dead-time models, 2006 American Control Conference (2006), 256–261.
  • [18] Y. J. Wang: Graphical computation of gain and phase margin specifications-oriented robust PID controllers for uncertain systems with time-varying delay, Journal of Process Control, 21(4), (2011), 475–488.
  • [19] S. Xingling and W. Honglun: Back-stepping active disturbance rejection control design for integrated missile guidance and control system viareduced-order ESO, Isa Transactions, 57(2015), 10–22.
  • [20] R.Yang, M. Sun, and Z. Chen: Graphical design of linear active disturbance rejection controller for uncertain first-order-plus-dead-time plant, Proceedings of 2011 International Conference on Modelling, Identification and Control (2011), 371–375.
  • [21] B. Zhang, W. Tan, and J. Li: Tuning of linear active disturbance rejection controller with robustness specification, ISA Transactions, 85(2018), 237–246.
  • [22] Q. Zheng, L. Q. Gao, and Z. Gao: On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics, IEEE Conference on Decision and Control (2007), 3501–3506.
Uwagi
Paweł Nowak and Jacek Czeczot were financed by the grant from the Silesian University of Technology – subsidy for maintaining and developing the research potential in 2020. Patryk Grelewicz was financed by the European Union through the European Social Fund (grant POWR.03.02.00-00-1029).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52d0119d-dcff-41cf-86cd-6116e6173dc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.