PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of a Neogene basalt intrusion on the optical properties and internal structure of the dispersed organic matter in Carboniferous strata (SW-part USCB)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The S-7 borehole log from the Sumina area (USCB Poland) revealed the presence of three basaltic veins originating from a basalt dyke. Coal interlayers in the rocks surrounding the basaltic veins have been coked to form natural coke. Photometric measurements revealed that the optical properties of the studied natural coke samples are characteristic of semi-graphite (Rmax > 9%). The natural coke matrix of all of the analyzed samples has a biaxial negative optical character. Vitrinite in the examined natural coke samples is characterized by a lower optical anisotropy than that of the natural matrix and it has a biaxial positive optical character. Vitrinite in almost all samples taken at locations more distant from the intrusion has a biaxial positive optical character. A reversal of the changes of the true maximum vitrinite reflectance and bireflectance with changing distance from the second basaltic vein has been observed. The temperature regime that acted upon the dispersed organic matter located in the immediate vicinity of the intrusion, estimated on the basis of the selected experimental data, is suggested to be higher than 750°C.
Rocznik
Strony
249--262
Opis fizyczny
Bibliogr. 78 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Mining and Geology, Department of Applied Geology, Akademicka 2 Street, 44-100 Gliwice, Poland.
  • Silesian University of Technology, Faculty of Mining and Geology, Department of Applied Geology, Akademicka 2 Street, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mining and Geology, Department of Applied Geology, Akademicka 2 Street, 44-100 Gliwice, Poland
autor
  • Central Mining Institute, Plac Gwarków 140-166 Katowice, Poland
  • Silesian University of Technology, Faculty of Mining and Geology, Department of Applied Geology, Akademicka 2 Street, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Mining and Geology, Department of Applied Geology, Akademicka 2 Street, 44-100 Gliwice, Poland
Bibliografia
  • 1. Adamczyk, Z. and Komorek, J. 1999. Reflectance of vitrinite from barren rock inserts of coal seams of the upper marginal beds in Jejkowice trough (USCB). Zeszyty Naukowe Politechniki Śląskiej, Górnictwo, 241, 21-35 (in Polish).
  • 2. Adamczyk, Z., Komorek, J. and Lewandowska, M. 2014. Specific types of coal macerals from Orzesze and Ruda beds from “Pniówek” coal mine (USCB - Poland) as a manifestation of thermal metamorphism. Archives of Mining Sciences, 59, 1, 77-91.
  • 3. Amijaya, H. and Littke, R. 2006. Properties of thermally metamorphosed coal from Tajung Enim area South Sumatra Basin, Indonesia with special reference to the coalification path of maceral. International Journal of Coal Geology, 66, 271-295.
  • 4. Borrego, A.G. and Martín, A.J. 2010. Variation in the structure of anthracite at a fast heating rate as determined by its optical properties: An example of oxy-combustion conditions in a drop tube reactor. International Journal of Coal Geology, 81, 301-308.
  • 5. Bruns, B. and Littke, R. 2015. Lithological dependency and anisotropy of vitrinite reflectance in high rank sedimentary rocks of the Ibbenbüren area, NW-Germany: Implications for the tectonic and thermal evolution of the Lower Saxony Basin. International Journal of Coal Geology, 137, 124-135.
  • 6. Chodynicka, L. and Sankiewicz, J. 1972. Magmatic intrusion in Lower Namurian in the Marklowice region, Upper Silesia Coal Basin Poland. Rocznik Polskiego Towarzystwa Geologicznego, 42, 309-326 (in Polish).
  • 7. Chodyniecka, L. and Sankiewicz, J. 1978. Basalt from the Sumina area (Rybnik Coal Basin). Geological Quarterly, 22, 119-133 (in Polish).
  • 8. Cook, A.C., Murchison, D.G. and Scott E. 1972. Optically biaxial anthracitic vitrinite. Fuel, 51, 180-184.
  • 9. Cooper, J.R., Crelling, J.C., Rimmer, S.M. and Whittington, A.G. 2007. Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: implication for generation of volatile. International Journal of Coal Geology, 71, 15-27.
  • 10. Davis, A. 1978. The Reflectance of Coal. In: C. Karr (Ed.), Analytical Methods for Coal and Coal Products 1. Academic Press, New York, 27-81.
  • 11. Ergun, S. and McCartney, J.T. 1960. Reflectance of coals, graphite and diamond. Fuel, 39, 449-454.
  • 12. Fink, R., Virgo, S., Arndt, M., Visser, W., Littke, R. and Urai, J.L. 2016. Solid bitumen in calcite veins from the Natih Formation in the Oman Mountains: Multiple phases of petroleum migration in a changing stress field. International Journal of Coal Geology, 157, 39-51
  • 13. Gabzdyl, W. 1964. Przejawy metamorfizmu kontaktowego na kopalni Jastrzębie. Zeszyty Naukowe Politechniki Śląskiej, 12, 107-121, Gliwice (in Polish).
  • 14. Gabzdyl, W. and Probierz, K. 1987. The occurrence of anthracites in an area characterized by lower rank coals in the Upper Silesian Coal Basin of Poland. International Journal of Coal Geology, 7, 209-225.
  • 15. Goodarzi, F. and Murchison, D. G. 1972. Optical properties of carbonized vitrinite. Fuel, 51, 322-328.
  • 16. Grieve, D. A. 1991. Biaxial vitrinite reflectance in coals of the Elk Valley coalfield, Southeastern British Columbia, Canada. International Journal of Coal Geology, 19, 185-200.
  • 17. Gurba, L.W. and Weber, C.R. 2001. Effects of igneous intrusions on coal bed methane potential, Gunnedah Basin, Australia. International Journal of Coal Geology, 46, 113-133.
  • 18. Hartkopf-Fröder, C., Königshof, P., Littke, R. and Schwarzbauer, J. 2015. Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review. International Journal of Coal Geology, 150-151, 74-119.
  • 19. Hevia,V. and Virgos, J.M. 1977. The rank and anisotropy of anthracites: the indicating surface of reflectivity in uniaxial and biaxial substance. Journal of Microscopy, 109, 23-28.
  • 20. Houseknecht, D.W. and Weesner, C.M.B. 1997. Rotational reflectance of dispersed vitrinite from the Arkoma basin. Organic Geochemistry, 26, 3/4, 191-206.
  • 21. Hower, J.C. and Davis, A. 1981a. Application of vitrinite reflectance anisotropy in the evaluation of coal metamorphism. Geological Society America Bulletin, 92, part I, 350-366.
  • 22. Hower, J.C. and Davis, A. 1981b. Vitrinite reflectance anisotropy as a tectonic fabric element. International Journal of Coal Geology, 9, 165-168.
  • 23. Jimenez, A., Iglesias, J.M., Laggoun-Defarge, F. and Suarez- Ruiz, I. 1999. Effect of the increase in temperature on the evolution of the physical and chemical structure of vitrinite. Journal of Analytical and Applied Pyrolysis, 50, 117-148.
  • 24. Khorasani, K. G., Murchison, D.G. and Raymond, A.G.1990. Molecular disordering in natural cokes approaching dyke and sill contact. Fuel, 69, 8, 1037-1046.
  • 25. Kilby, W.E. 1986. Biaxial reflecting coals in the Peace River coalfield. British Columbia Ministry of Energy, Mines and Petroleum, Geological Fieldwork, paper 1986-1, 127-137.
  • 26. Kilby, W.E. 1988. Recognition of vitrinite with non-uniaxial negative reflectance characteristic. International Journal of Coal Geology, 9, 267-285.
  • 27. Kilby W.E. 1991. Vitrinite reflectance measurement - some technique enhancements and relationship. International Jour nal of Coal Geology, 9, 201-218.
  • 28. Klika, Z. and Kraussova, J. 1993. Properties of altered coals associated with Carboniferous red beds in the Upper Silesian Coal Basin and their tentative classification. International Journal of Coal Geology, 22, 217-235
  • 29. Komorek, J. 1996. Optical properties of coals of types 31-42 from the seams of the Upper Silesian Coal Basin. Prace Geologiczne, 140, Monograph (in Polish, detailed abstract in English).
  • 30. Komorek, J. 2013. Changes of internal structure of vitrinite and liptinite subjected thermal treatment within the range 400- 1200°C. Monograph. Wydawnictwo Politechniki Śląskiej, Gliwice (in Polish, detailed abstract in English).
  • 31. Komorek, J. and Morga, R. 2001, Characteristics of optical properties of vitrinite subjected to thermal treating exemplified by coal from seam 833/1 the „Gliwice” mine. Zeszyty Naukowe Politechniki Śląskiej, Górnictwo, 249, 59-73 (in Polish).
  • 32. Komorek, J. and Morga, R. 2003. Vitrinite reflectance property change during heating under inert condition. International Journal of Coal Geology, 54, 125-136.
  • 33. Komorek, J. and Morga, R. 2007. Evolution of optical properties of vitrinite, sporinite and semifusinite in response to heating under inert condition. International Journal of Coal Geology, 71, 389-404.
  • 34. Komorek, J., Morga, R. and Krzeszowska, E. 2001. Relationship between optical properties of sporinite and vitrinite subjected to the thermal treatment in laboratory condition. Acta Universitatis Carolinae - Geologica, 45, 2-4, 65-74.
  • 35. Komorek, J., Morga, R. and Lewandowski, M. 2000. Optical properties of heat treated vitrinite-coal from Chwałowice Colliery as an example. Przegląd Górniczy, 11, 36-40 (in Polish, abstract in English).
  • 36. Komorek, J., Morga, R. and Pozzi, M. 1995. Optical anisotropy of vitrinite in coal seams from the fold area in the Upper Silesian Coal Basin (Poland). Abstracts of the XIII International Congress on Carboniferous-Permian. Kraków, 78.
  • 37. Komorek, J. and Pozzi, M. 1996. Optical anisotropy of coal from the Jastrzębie Fold (Upper Silesian Coal Basin). Geological Quarterly, 40, 393-405.
  • 38. Kotas, A. (Ed.) 1994. Coal-bed methane potential of Upper Silesian coal Basin, Poland. Prace PIG, CXLII, Warszawa.
  • 39. Kuhl, J. 1954. Tufogenic rocks in the Carboniferous of Upper Silesia. Rocznik Polskiego Towarzystwa Geologicznego, 22, 181-208, Kraków (in Polish).
  • 40. Kwiecińska, B. and Petersen, H.I. 2004. Graphite, semi-graphite, natural coke, and natural char classification - ICCP system. International Journal of Coal Geology, 57, 99-116.
  • 41. Kwiecińska, B., Hamburg, G. and Vleeskens, J.M. 1992. Formation temperatures of natural coke in the Lower Silesian Coal Basin, Poland. Evidence from pyrite and clays by SEMEDX. International Journal of Coal Geology, 21, 217-235.
  • 42. Kwiecińska, B., Muszyński, M., Vleeskens, J. and Hamburg, G. 1995. Natural coke from the La Rasa mine, Tineo, Spain. Mineralogia Polonica, 26, 2, 3-14.
  • 43. Langerberg, W. and Kalkreuth, W. 1991. Reflectance anisotropy and syn-deformational coalification of the Jewel seam in the Cadomin area, Alberta, Canada. International Journal of Coal Geology, 19, 303-317.
  • 44. Langerberg, W. and Kalkreuth, W. 1991a. Tectonic control on regional coalification and vitrinite reflectance anisotropy of Lower Cretaceous coals in the Alberta Foothills, Canada. Bulletin de la Société géologique de France, 162, 2, 375-383.
  • 45. Levine, J.R.. and Davis, A. 1984. Optical anisotropy of coals as an indicator of tectonic deformation, Broad Top Coal Field, Pennsylvania. Geological Society America Bulletin, 95, 100-108.
  • 46. Levine, J.R. and Davis, A. 1989a. Reflectance anisotropy of Upper Carboniferous coals in the Appalachian foreland basin, Pennsylvania, USA. International Journal of Coal Geology, 13, 341-373.
  • 47. Levine, J.R. and Davis, A. 1989b. The relationship of coal optical fabrics to Alleghanian tectonic deformation in the central Appalachian fold and thrust belt, Pennsylvania. Geological Society America Bulletin, 101, 1333-1347.
  • 48. Levine, J.R. and Davis, A. 1990. Reflectance anisotropy of Carboniferous coals in the Appalachian Foreland Basin, Pennsylvania, USA. International Journal of Coal Geology, 16, 201-204.
  • 49. Littke, R., Urai, J.L., Uffmann, A.K. and Risvanis, F. 2012. Reflectance of dispersed vitrinite in Palaeozoic rocks with and without cleavage: Implications for burial and thermal history modeling in the Devonian of Rursee area, northern Rhenish Massif, Germany. International Journal of Coal Geology, 89, 41-50.
  • 50. Mastalerz, M., Drobniak, A. and Schimmelmann, A. 2009. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin. International Journal of Coal Geology, 77, 310-319.
  • 51. Matuszewska, A., Pusz, S. and Duber, S. 2015. Evaluation of the structure of bituminous coal from Sośnica mine in the Upper Silesian Coal Basin (Poland) using reflectance indicating surface (RIS) parameters. International Journal of Coal Geology, 152, Part B, 177-188.
  • 52. Middleton, M.F. 1991. Tectonic influence on vitrinite reflectance. International Journal of Coal Geology, 16, 235-237.
  • 53. Morga, R. 2000. Optical anisotropy of coal in tectonically deformed seams in the Upper Silesian Coal Basin. Prace Geologiczne, 148, Monograph. (in Polish, detailed abstract in English).
  • 54. Morga, R. 2010. Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis. International Journal of Coal Geology, 84, 1-15.
  • 55. Morga, R. and Komorek, J. 2002. Influence of thermal treatment on optical properties and internal structure of anthracite. Zeszyty Naukowe Politechniki Śląskiej, Górnictwo, 254, 111-128 (in Polish).
  • 56. Morga, R. and Komorek, J. 2004. Changes of optical properties and internal structure of vitrinite subjected to thermal treatment within the range of 400-1200°C. Prace Geologiczne, 152, Monograph. (in Polish, detailed abstract in English).
  • 57. Murchison, D.G. 1991. Petrographic aspect of coal structure: reactivity of macerals in laboratory and natural environment. Fuel, 70, 296-315.
  • 58. Murchison, D.G. 2006. The influence of heating rates on organic matter in laboratory and natural environment. International Journal of Coal Geology, 67, 145-157.
  • 59. PN-ISO 7404-2: 2005. Węgiel kamienny - Analiza petrograficzna - Przygotowanie próbek węgla do badań mikroskopowych.
  • 60. PN-ISO 7404-5: 2002. Metody analizy petrograficznej węgla kamiennego (bitumicznego) i antracytu - Część 5: Metoda mikroskopowa oznaczania refleksyjności witrynitu.
  • 61. Pozzi, M. 1996. Optical anisotropy of coal from the seams of Jastrzębie area as a manifestationof tectonic stress. Zeszyty Naukowe Politechniki Śląskiej, Górnictwo, 229, Monograph (in Polish, detailed abstract in English).
  • 62. Probierz, K. 1989. Effect of thermal metamorphism on coalification degree (rank) and petrographic composition of the coal seams in Jastrzębie region (Upper Silesia Coal Basin of Poland). Zeszyty Naukowe Politechniki Śląskiej, Górnictwo, 176, Gliwice, Monograph (in Polish, detailed abstract in English).
  • 63. Probierz, K. and Lewandowska M. 2004. Paleotemperatures of Upper Carboniferous sedimentary rocks in the NW part of the Upper Silesian Coal Basin, Poland. Geologica Belgica, 7, 3-4, 313-318.
  • 64. Rahman, M.W. and Rimmer, S.M. 2014. Effects of rapid thermal alteration on coal: Geochemical and petrographic signatures in the Springfield (No. 5) Coal, Illinois Basin. International Journal of Coal Geology, 131, 214-226.
  • 65. Reinhardt, M. 1991. Vitrinite reflectance, illite crystallinity and tectonics: results from the Northern Apennines (Italy). Organic Geochemistry, 17, 175-184.
  • 66. Sarana, S. and Kar, R. 2011. Effect of igneous intrusive on coal microconstituents: Study from an Indian Gondwana coalfield. International Journal of Coal Geology, 85, 161-167
  • 67. Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D. and Teichmüller, R. 1982. Stach’s Textbook of Coal Petrology. Gebruder Borntraeger, Berlin-Stuttgart.
  • 68. Stewart, A.K., Massey, M., Padgett, P.L., Rimmer, S.M. and Hower, J.C. 2005. Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield (No. 5) coal, Harrisburg, Illinois. International Journal of Coal Geology, 63, 58-67
  • 69. Stone, I.J. and Cook, A.C. 1979. The influence of some tectonic structures upon vitrinite reflectance. International Journal of Coal Geology, 87, 497-508.
  • 70. Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G. and Hackley, P.C. 2012. Review and update of the applications of organic petrology: Part 1, geological application. International Journal of Coal Geology, 99, 54-112.
  • 71. Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.K.F., Littke, R. and Robert, T. 1998. Organic Petrology. Gebruder Borntraeger, Berlin-Stuttgart.
  • 72. Ting, F.T.C. 1981. Uniaxial and biaxial vitrinite reflectance models and their relationship to paleotectonics. In: J. Brook (Ed.), Organic Maturation Studies and Fossil Fuel Exploration. Academic Press, London, 379-392.
  • 73. Tsai, L.LY. 1991. A study of the reflectance indicatrix of vitrinite. International Conference on Coal Science Proceedings, Oxford, 127-130.
  • 74. Valentim, B., Rodrigues, S., Ribeiro, S., Pereira, G., Guedes, A. and Suárez-Ruiz, I. 2013. Relationships between the optical properties of coal macerals and the chars resulting from fluidized bed pyrolysis. International Journal of Coal Geology, 111, 80-89.
  • 75. Van Krevelen, D.W. 1993. Coal. 3rd edition, Elsevier, Amsterdam.
  • 76. Vries, H. A., Habets, P. J. and Bokhoven, C. 1968. Das Refleksionsermögen von Steinkohle II. Die Reflexionanisotropie. Brennstoff-Chemie, 49, 47-52.
  • 77. Wang, J., Du, J., Chang, L. and Xie, K. 2010. Study on the structure and pyrolysis characteristics of Chinese western coal. Fuel Processing Technology, 91, 430-433.
  • 78. Yule, B.L., Roberts, S. and Marshall, J.E. A. 2000. The thermal evolution of sporopollenin. Organic Geochemistry, 31, 859-870.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52cd9373-b46b-4568-933d-01583606af3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.