Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main problem of widespread introduction of magnetic water treatment (MWT) in the processes of water and wastewater treatment is the lack of modern research aimed at studying the mechanisms of MWT effects, in particular the influence on the physicochemical properties of aqueous solutions. This study explains the effect of MWT taking into account the physical and chemical properties of aqueous solutions due to the presence of the quantum differences in water molecules. All of the MWT effects are related to the change in the physicochemical properties of aqueous solutions. It is due to the presence of two types of water molecule isomers and their librational oscillations. The result of MWT is a violation of the synchronism of para-isomers vibrations, with the subsequent destruction of ice-like structures due to the receiving of energy from collisions with other water molecules (ortho-isomers). One of the most important MWT effects includes the change in the nature and speed of the physicochemical processes in aqueous solutions by increasing the number of more physically and chemically active ortho-isomers. The MWT parameters specified in the work allow explaining the nature of most MWT effects and require developing the scientific and methodological principles for the implementation of the MWT process and mathematical modeling of the MWT process in the water and wastewater treatment. It can be used in the design of the MWT devices taking into account the constructive and mode parameters of MWT devices.
Czasopismo
Rocznik
Tom
Strony
251--260
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Sumy State University, Sumy, Ukraine
autor
- Sumy State University, Sumy, Ukraine
autor
- Sumy State University, Sumy, Ukraine
autor
- Sumy State University, Sumy, Ukraine
autor
- Sumy State University, Sumy, Ukraine
Bibliografia
- 1. Al-Ogaidi A.A.M., Wayayok A., Rowshon M.K., Abdullah, A.F. 2017. The influence of magnetized water on soil water dynamics under drip irrigation systems. Agricultural Water Management, 180 (A), 70–77.
- 2. Bali M., Mabrouk Y., Abdelli N. 2016. Effects of magnetic treatment on scaling power of hard waters. Separation and Purification Technology, 171, 88–92.
- 3. Bali, M., Gueddari, M. 2018. The effect of magnetic treatment on the physico-chemical and microbiological characteristics of hard waters. Separation Science and Technology, 53(9), 1405–1411. https://doi.org/10.1080/01496395.2018.1444640
- 4. Chibowski, E., Szcześ, A. 2018. Magnetic water treatment – A review of the latest approaches. Chemosphere,Vol. 203, 54–67.
- 5. Colic, M., Morse, D. 1999. The elusive mechanism of the magnetic ‘memory’ of water. Colloids and surfaces A: Physicochem, Eng. Aspects 154, 167–174.
- 6. Hama, T., Kouchi, A., Watanabe, N.. 2016. Statistical ortho-to-para ratio of water desorbed from ice at 10 kelvin. Science, 351 (6268), 65–67. DOI: 10.1126/science.aad4026
- 7. Horke, D.A., Chang, Y.-P., Długołęcki, K., Küpper, J. 2014. Separating Paraand Ortho Water. Angewandte Chemie International Edition, 53 (44), 11965–11968. DOI:10.1002/anie.201405986
- 8. Kilaj, A., Gao, H., Rösch, D., Rivero, U., Küpper, J., Willitsch, S. 2018. Observation of different reactivities of para and ortho-water towards trapped diazenylium ions. Nature communications, 9:2096, 1–7. DOI: 10.1038/s41467–018–04483–3
- 9. Klassen, V. 1982. Magnetization of Water Systems. Moskow, Nauka, 296 p.
- 10. Koksharov, S.A., Konstantinov, O.I., Moriganov, A.P., Melnikov, B. . 1990. Vliyanie magnitnogo polya na sostoyanie rastvorov aktivnyh krasiteley [Effect of a magnetic field on the state of active dye solutions]. Journal prikladnoy himii, 63, (3), 565–571.
- 11. Koshoridze S.I., Levin Yu.K. 2014. Model of scale deposition with magnetic water treatment. Formerly known as nanomechanics science and technology: an international journal, 5(1), 51–71.
- 12. Kozic, V., Hamler, A., Ban, I., Lipus, L.C.. 2010. Magnetic water treatment for scale control in heating and alkaline conditions. Desalination and Water Treatment, 22(1–3), 65–71. https://doi.org/10.5004/dwt.2010.1549
- 13. Kravchuk T., Reznikov M., Tichonov P., Avidor N., Meir Y., Bekkerman A., Alexandrowicz G.. 2011. A Magnetically Focused Molecular Beam of Ortho-Water. Science, 331(6015), 319–321. DOI: 10.1126/science.1200433
- 14. Kuyanov-Prozument, K., Choi, M.Y., Vilesov, A.F.. 2010. Spectrum and infrared intensities of OHstretching bands of water dimmers. J. of Chem. Phys, 132, р. 014304
- 15. Lipus L. C., Acko B., Neral B. 2013. Influence of magnetic water treatment on fabrics’ characteristics. Journal of Cleaner Production, 52, 374–379.
- 16. Lipus L. C., Dobersek D. 2007. Influence of magnetic field on the aragonite precipitation. Chemical Engineering Science, 62, 2089–2095.
- 17. Liu, Z., Liang, Z., Wu, S., Liu, F.. 2015. Treatment of municipal wastewater by a magnetic activated sludge device. Desalination and Water Treatment, 53(4), 909–918. https://doi.org/10.1080/19443994.2013.848416
- 18. Malafaev, N.T. 2011. Interactions and dynamics of molecules in pure water [in Russian]. VostochnoEvropeyskiy journal peredovyh tehnologiy, 4(8), 48–58.
- 19. Malafaev, N.T., Pogojih, N.I. 2015. Modeling of rotational vibrations of water molecules [in Russian]. Vostochno-Evropeyskiy journal peredovyh tehnologiy, 2(5), 27–35.
- 20. Malafaev, N.T., Pogojih, N.I., Ishtvan, Е. А. 2013. Features of rotational vibration modes of water molecules in free and bound states [in Russian]. Vostochno-Evropeyskiy journal peredovyh tehnologiy, 5(6), 11–15.
- 21. Mamrashev A.A.; Maximov L.V.; Nikolaev N.A.; Chapovsky P.L. 2018. Detection of Nuclear Spin Isomers of Water Molecules by Terahertz Time-Domain Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 8(1), 13–18. DOI: 10.1109/TTHZ.2017.2764385
- 22. Meier, B., Kouřil, K., Bengs, C., Kouřilová, H., Barker, T.J., Elliott, S.J., Alom, S., Whitby, R.J., Levitt, M.H.. 2018. Spin-isomer conversion of water at room temperature, and quantum-rotor-induced nuclear polarization, in the water-endofullerene. Phys. Rev. Lett. 120, 266001 (6 pр). DOI: 10.1103/PhysRevLett.120.266001
- 23. Pershin S.M., Grishin M.Ya, Lednev V.N., Garnov S.V., Bukin V.V., Chizhov P.A., Khodasevich I. A., Oshurko V. B. 2018. Quantification of distortion of the water OH-band using picosecond Raman spectroscopy. Laser Physics Letters, 15(3), 035701 (4pp). DOI: 10.1088/1612–202X/aa9321
- 24. Pershin, S.М. 2012. Quantum differences between the ortho and the para of spin isomers of H2O as the physical basis of the anomalous properties of water [in Russian]. Nanostructures. Mathematical Physics and Modeling, 7(2), 103–120.
- 25. Plyatsuk L.D., Roy I.O., Chernysh Y.Y., Kozii I.S., Hurets L.L., Musabekov A.A. 2019. Clarification of the recent scientific approaches in magnetic water treatment. Journal of Engineering Sciences, 6(1), F12–F18. DOI: 10.21272/jes.2019.6(1).f3
- 26. Rashid, F.L., Hassan, N.M., Jafar, A.M., Hashim, A.. 2013. Increasing Water Evaporation Rate by Magnetic Field. International Science and Investigation Journal, 2(3), 61–68.
- 27. Roi, І.О. 2014. c sampling in the processes of natural water treatment [in Russian]. Ecologiya i promyshlennost, 3(40), 47–52.
- 28. Sammer, M., Kamp, C., Paulitsch-Fuchs, A.H., Wexler, A.D., Cees, J., Buisman, N., Fuchs, E.C.. 2016. Strong Gradients in Weak Magnetic Fields Induce DOLLOP Formation in Tap Water. Water, 8(3):79, 1–19. DOI:10.3390/w8030079
- 29. Seyfi A., Afzalzadeh R., Hajnorouzi A. 2017. Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chem. Eng. Process, 120, 195–200.
- 30. Szcześ A., Chibowski E., Holysz L., Rafalski P. 2011. Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing: Process Intensification, 50 (1), 124–127.
- 31. Toledo, E.J.L., Ramalho, T.C., Magriotis, Z.M.. 2008. Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. Journal of Molecular Structure, 888(1–3), 409–415. DOI:10.1016/j.molstruc.2008.01.010
- 32. Voloshyn, V.P., Jeligovskaia, Е.А., Malenkov, G.G., Naberuhin, J.I. Tytik, D.L. 2001. Hydrogen bond network structures and the dynamics of water molecules in condensed water systems [in Russian]. Rossiyskiy Himicheskiy Journal, Vol. XLV, 3, 31–37.
- 33. Zaharov, S. D., Mosiagina, I. V. 2011. Cluster structure of water [in Russian]. Moscow, p. 24.
- 34. Zaidi, N.S., Sohaili, J., Muda, K., Sillanpää, M.. 2013. Magnetic Field Application and its Potential in Water and Wastewater Treatment Systems. Separation & Purification Reviews, 43(3), 206–240. https://doi.org/10.1080/15422119.2013.794148
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52ca31ed-f528-4850-a020-55a2f60f409f