PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the width of protection zone near a water supply network

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A protection zone near the water supply network belongs to the proposals of limiting negative results of potential breakages of buried water pipes. Water leaking from a damaged pipe can create swallow holes or hollows, dangerous especially in the urban areas. The proposed zone is an area on the soil surface along a buried water network, where the outflow of water could be expected after a potential failure of the pipe. The infrastructure in this zone should be carefully planned to limit the social, economic and environmental costs in the case of leakage. The investigations included laboratory tests of a buried water pipe breakage for different cases of leak areas and values of hydraulic pressure head in a pipe as well as analysis of the obtained results and determination of a protection zone for the investigated cases on the basis of tolerance limits. The calculated values of the zone width (5 m if operating pressure is lower than 0.4 MPa, and 7 m otherwise) occurred high, mainly because of the high dispersion of the laboratory tests results. Moreover, we recommended the values of tolerance level to be assumed in calculations.
Rocznik
Strony
123--128
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • PhD, Eng.; Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin
  • MSc, Eng.; Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin
  • MSc, Eng.; Graduate of the Lublin University of Technology
Bibliografia
  • [1] Kowalski, D., & Jaromin, K. (2010). Metoda wyznaczania zasięgu strefy ochrony wodociągowych przewodów tranzytowych (Designing method of protection zones range of water transit pipes). Proceedings of ECOpole, 4(2), 419-424 (in Polish, with English abstract).
  • [2] Iwanek, M., Suchorab, P., & Karpińska-Kiełbasa, M. (2017). Suffosion holes as the results of a breakage of a buried water pipe. Periodica Polytechnica Civil Engineering, 61(4), 700-705.
  • [3] Hotloś, H. (2009). Analiza uszkodzeń i kosztów naprawy przewodów wodociągowych w okresie zimowym (Analysis of failure events and damage repair costs for water-pipe networks in the winter season). Ochrona Środowiska, 31(2), 41-48 (in Polish, with English abstract).
  • [4] Romano M., Kapelan Z., & Savić, D.A. (2013). Geostatistical techniques for approximate location of pipe burst events in water distribution systems. Journal of Hydroinformatics, 15(3), 634-651.
  • [5] Zimoch, I. (2012). Regulacja ciśnienia jako element zarządzania ryzykiem eksploatacji sieci wodociągowej (Pressure Control as Part of Risk Management for a Water-pipe Network in Service). Ochrona Środowiska, 34(4), 57-62 (in Polish, with English abstract).
  • [6] Liu, Z., & Kleiner, Y. (2014). Computational intelligence for urban infrastructure condition assessment: Water transmission and distribution systems. IEEE Sensors Journal, 14(12), 4122-4133.
  • [7] Pérez, R., Cugueró, M.A., Cugueró, J., & Sanz, G. (2014). Accuracy assessment of leak localisation method depending on available measurements. Procedia Engineering, 70, 1304-1313.
  • [8] Gaska, K., Generowicz, A., Zimoch, I., Ciula, J. & Iwanicka, Z. (2017). A high-performance computing (HPC) based integrated multithreaded model predictive control (MPC) for water supply networks. Architecture Civil Engineering Environment, 10(4), 141-151.
  • [9] Zimoch, I. & Szymura, E. (2012). Operator reliability in risk assessment of industrial systems function. Przemysl Chemiczny, 93(1), 111-116.
  • [10] Cugueró-Escofet, M.Ŕ., Puig, V., & Quevedo, J. (2017). Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the Barcelona water network. Control Engineering Practice, 63, 1-12.
  • [11] Zimoch, I. & Lobos, E. (2012). Comprehensive interpretation of safety of wide water supply systems. Environment Protection Engineering, 38(3), 107-117.
  • [12] Cobacho, R., Arregui, F., Soriano, J., & Cabrera, E. (2015). Including leakage in network models: an application to calibrate leak valves in EPANET. Journal of Water Supply: Research and Technology- Aqua, 64(2), 130-138.
  • [13] Kowalski, D., Kowalska, B. & Kwietniewski, M. (2015). Monitoring of water distribution system effectiveness using fractal geometry. Bulletin of The Polish Academy of Sciences - Technical Sciences, 63(1), 155-161.
  • [14] Iwanek, M., Kowalski, D., & Kwietniewski, M. (2015). Badania modelowe wypływu wody z podziemnego rurociągu podczas awarii (Model studies of a water outflow from an underground pipeline upon its failure). Ochrona Środowiska, 37(4), 13-17 (in Polish, with English abstract).
  • [15] Okeya, I., Hutton, C., & Kapelan, Z. (2015). Locating pipe bursts in a district metered area via online hydraulic modelling. Procedia Engineering, 119, 101-110.
  • [16] Suchorab, P., Kowalska, B., & Kowalski, D. (2016). Numerical investigations of water outflow after the water pipe breakage. Rocznik Ochrona Środowiska, 18(2), 416-427.
  • [17] Wilson D., Filion, Y., & Moore, I. (2017). State-of the- art review of water pipe failure prediction models and applicability to large-diameter mains. Urban Water Journal, 14(2), 173-184.
  • [18] Islam, M. S., Sadiq, R., Rodriguez, M. J., Francisque, A., Najjaran, H., Naser, B., & Hoorfar, M. (2012). Evaluating leakage potential in water distribution systems: a fuzzy-based methodology. Journal of Water Supply: Research and Technology - AQUA, 61(4), 240-252.
  • [19] Kutyłowska, M. (2015). Neural network approach for failure rate prediction. Engineering Failure Analysis, 47, 41-48.
  • [20] Kamiński, K., Kamiński, W., & Mizerski, T.(2017). Application of artificial neural networks to the technical condition assessment of water supply systems. Ecological Chemistry and Engineering S, 24(1), 31-40.
  • [21] Kutyłowska, M.(2017a). Comparison of two types of artificial neural networks for predicting failure frequency of water conduits. Periodica Polytechnica Civil Engineering, 61(1), 1-6.
  • [22] Kutyłowska, M. (2017b). K-Nearest Neighbours Method as a Tool for Failure Rate Prediction. Periodica Polytechnica Civil Engineering, https://doi.org/10.3311/PPci.10045
  • [23] Iwanek, M., Kowalski, D., Kowalska, B., Hawryluk, E., Kondraciuk, K. (2014). Experimental investigations of zones of leakage from damaged water network pipes. In C.A. Brebbia, S. Mambretti (Eds.), Urban Water II. WIT Transactions on the Built Environment, 139, 257-268, Southampton, Boston, UK: WIT Press 2014, http://dx.doi.org/10.2495/uw140221.
  • [24] Iwanek, M., Kowalska, B., Hawryluk, E., & Kondraciuk. K. (2016a). Distance and time of water effluence on soil surface after failure of buried water pipe. Laboratory investigations and statistical analysis. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 18(2), 278-284.
  • [25] Iwanek M., Suchorab P., Budzioch M. (2016). Statystyka opisowa wyników fizycznej symulacji awarii podziemnego przewodu wodociągowego (Descriptive statistics results of physical simulation water pipe failure). In Kuś K., Piechurski F. (Eds.), Nowe technologie w sieciach i instalacjach wodociągowych i kanalizacyjnych, Gliwice: Instytut Inżynierii Wody i Ścieków. Politechnika Śląska, 37-50.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52c77e85-b7dd-48e1-8488-3e2b9962c696
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.