PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of mechanical motion amplification for vibration energy harvesting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibration Energy Harvesting is being investigated for autonomous sensors and actuators that mainly utilize ambient and machine induced vibrations. Recently mechanical motion amplification is incorporated for improving power to weight ratio of vibration harvesters. The present study is motivated to investigate mechanical motion amplification characteristics with different configurations. The parameters investigated are motion amplification ratio, force transmissibility characteristics, weight of the electrical generator, effective damping coefficient achieved and linear nature of damping. Numerical analysis has been performed to compare important characteristics of device operating without amplification to that of with amplification with different configuration. The study has been concluded with comments on application of suitable type of amplification mechanism depending on weight/space constraints and desired effective damping coefficient.
Rocznik
Strony
art. no. 2022113
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • Faculty of Mechanical Engineering, Vishwakarma University, Pune
  • Faculty of Mechanical Engineering and Robotic, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and robotics, Department of Process Automation, Al. Adama Mickiewicza 30,30 - 059 Kraków, Poland
  • MSEDCL, Office of Regional Director, Pune, India
Bibliografia
  • 1. C. Wu, R. Liu, J. Wang,Y. Zi, L. Lin, Z. L. Wang; A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy; J. Nano Energy, 2017, 32, 287-293.
  • 2. L. Xie, M. Cai; An in-shoe harvester with motion magnification for scavenging energy from human foot strike; IEEE/ASME Trans. Mechatron, 2015, 20(6), 3264-3268.
  • 3. Z. Li, Z. Saadatnia, Z. Yang, Z, H. Naguib; A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting; Energy Convers. Manage., 2018, 174, 188-197.
  • 4. X. Zhao, J. Cai, Y. Guo, C. Li, J. Wang, H. Zheng; Modeling and experimental investigation of an AA-sized electromagnetic generator for harvesting energy from human motion; Smart Mater. Struct., 2018, 27(8), 085008.
  • 5. H. Zou, L.C. Zhao, Q.H. Gao, L. Zuo, F.R. Liu, T. Tan, W.M. Zhang; Mechanical modulations for enhancing energy harvesting: Principles, methods and applications; Appl. Energy, 2019, 255, 113871.
  • 6. T. Lin, J.J. Wang, L. Zuo; Efficient electromagnetic energy harvester for railroad transportation; Mechatronics, 2018, 53 , 277-286.
  • 7. Z. Liu, X. Wang, S. Ding, R. Zhang, L. McNabb; A new concept of speed amplified nonlinear electromagnetic vibration energy harvester through fixed pulley wheel mechanisms and magnetic springs; Mech. Syst. Sig. Process., 2019, 126, 305-325.
  • 8. R. Hua, H. Liu, H. Yang, Y. Wang, J. Ferrante; A nonlinear interface integrated lever mechanism for piezoelectric footstep energy harvesting; Appl. Phys. Lett., 2018, 113(5), 053902.
  • 9. S. Wen, Q. Xu, B. Zi; Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame; IEEE Sens. J., 2018, 18(10), 3989-4000.
  • 10. M. B. Khan, D. H. Kim, J. H.Han, H. Saif, H. Lee, Y. Lee, T. I. Lee; Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit; Nano Energy, 2019, 58, 211-219.
  • 11. W. Wang, J. Cao, C.R. Bowen, D.J. Inman, J. Lin; Performance enhancement of nonlinear asymmetric bistable energy harvesting from harmonic, random and human motion excitations; Appl. Phys. Lett., 2018, 112(21), 213903.
  • 12. F. Qian, T. B. Xu, L. Zuo; Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism; Energy, 2019, 189, 116140. DOI: 10.1016/j.energy.2019.116140
  • 13. Y. Jia, J. Yan, A.A. Seshia, K. Soga. U.S. Patent No. 9,871,472. Washington, DC: U.S. Patent and Trademark Office, 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52c53ff0-7227-4acf-85d4-80c9c077bbe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.