Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Trace element variations in the Upper Aeronian (Llandovery, Lower Silurian), deep-water, black shale succession of the Barrandian area (Perunica) were studied across an interval associated with a graptolite mass extinction and global, positive carbon isotope anomaly. The main aim of the paper is to test whether distinct changes in graptolite diversity during Late Aeronian were linked with changes in deep sea water oxygenation. Using multiple geochemical proxies we documented high-frequency changes in oxygenation of sea water from sediments of the convolutus to linnaei (guerichi) biozones. Detailed comparison of graptolite diversity with those high-frequency oxygenation changes suggests that the long-term and step-wise Late Aeronian graptolite crisis was not significantly influenced by changes in oxygen level and thus it probably resulted by another causes. The collapse of global carbon cycle during the Late Aeronian probably only temporarily increased extinction rate of the long-term graptolite crisis and considerably decreased evenness of the uppermost Aeronian graptolite communities. The Aeronian graptolite mass extinction was thus primarily driven by other biotic and/or abiotic causes
Czasopismo
Rocznik
Tom
Strony
91--98
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
- Czech Geological Survey, Klárov 3/131, 11821 Prague 1, Czech Republic
autor
- Czech Geological Survey, Klárov 3/131, 11821 Prague 1, Czech Republic
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, Praha 6 - Suchdol, 165 21, Czech Republic
autor
- Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 135, Praha 6, 165 00, Czech Republic
Bibliografia
- 1. Algeo, T.J., Maynard, J.B., 2004. Trace element behaviour and redox facies in core shales of the Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318.
- 2. Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123: 323-333.
- 3. Bond, D.P.G., Zato, M., Wignall, P.B., Marynowski, L., 2013. Evidence for shallow water “Upper Kellwasser” anoxia in the Frasnian-Famennian reefs of Alberta, Canada. Lethaia, 46: 355-368.
- 4. Bouèek, B., 1953. Biostratigraphy, development and correlation of the Želkovice and Motol Beds of the Silurian of Bohemia. Sborník Ústředního Ústavu Geologického, Oddíl Paleontologický, 20: 421-484.
- 5. Calvert, S.E., Pedersen, T.F. , 1993 . Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113: 67-88.
- 6. Cocks, L.R.M., Torsvik, T.H., 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society of London Memoirs, 38: 5-24.
- 7. Derry, L.A., Jacobsen, S.B., 1990. The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochimica et Cosmochimica Acta, 49: 1955-1963.
- 8. Emerson, S.R., Huested, S.S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Geology, 34: 177-196.
- 9. Fedo, C.M., Eriksson, K.A., Krogstad, E.J., 1996 . Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60: 1751-1763.
- 10. Frýda, J., Frýdová, B., 2014 . First evidence for the Homerian (late Wenlock, Silurian) positive carbon isotope excursion from peri-Gond wana: new data from the Barrandian (Perunica). Bulletin of Geosciences, 89: 617-634.
- 11. Frýda, J., Frýdová, B., 2016. The Homerian (late Wenlock, Silurian) carbon isotope excursion from Perunica: does dolomite control the magnitude of the carbon isotope excursion? Canadian Journal of Earth Sciences, 53: 695-701.
- 12. Frýda, J., Štorch, P., 2014. Carbon isotope chemostratigraphy of the Llandovery in northern peri-Gondwana: new data from the Barrandian area, Czech Republic. Estonian Journal of Earth Sciences, 63: 220-226.
- 13. Frýda, J., Lehnert, O., Joachimski, M.M., 2014 . First record of the early Sheinwoodian carbon isotope excursion (ESCIE) from the Barrandian area of northwestern peri-Gondwana. Estonian Journal of Earth Sciences, 64: 42-46.
- 14. Guo, Q., Shields, G.A., Liu, C., Strauss, H., Zhu, M. , Pi , D., Goldberg , T. , 2007 . Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 194-216.
- 15. Hammarlund, E.U., Dahl, T.W., Harper, D.A.T., Bond, D.P.G., Nielsen , A.T. , Bjerrum , C.J. , Schovsbo , N.H. , Schönlaub , H.P., Zalasiewicz , J.A. , Canfield, D.E., 2012. Asulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters, 331-332: 128-139.
- 16. Hammer, Ř., Harper, D., 2008. Paleontological Data Analysis. Willey-Blackwell, Oxford.
- 17. Harper, D.A.T., Hammarlund, E.U., Rasmussen, C.M.Ř., 2014. End Ordovician extinctions: a coincidence of causes. Gondwana Research, 25: 1294-1307.
- 18. Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Lime-stone, Wabaunsee County, Kansas, USA. Chemical Geology, 99: 65-82.
- 19. Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129.
- 20. Kimura, H., Watanabe, Y., 2001. Ocean anoxia at the Precambrian-Cam brian boundary. Ge ol ogy, 29: 995-998.
- 21. Kříž, J., 1975. Revision of the Lower Silurian stratigraphy in Central Bohemia. Věstník Ústředního Ústavu Geologického, 50:275-282.
- 22. Kříž, J., 1992. Silurian field excursions: Prague Basin (Barrandian), Bohemia. National Museum Wales, Geological Series, 13:1-111.
- 23. Kříž, J., 1998. Silurian. In: Paleozoic of the Barrandian (Cambrian to Devonian) (eds. I. Chlupáč, V. Havlíček, J. Kříž, Kukal and P. Štorch): 79-101. Český Geologický Ústav, Praha.
- 24. Lee, S.G., Kim, Y., Chae, B.G., Koh, D.C., Kim, K.H., 2004. The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Applied Geochemistry, 19: 1711-1725.
- 25. Lepka, F., Podracký, P., Knotek, M., 1984. Possibilities of the use of geochemical criteria for stratigraphic division of silty-clayey sediments of Barrandian (in Czech). Acta Montana, 67: 59-74.
- 26. MacRae, N.D., Nesbitt, H.W., Kronberg, B.I., 1992. Development of a positive Eu anomaly during diagenesis. Earth and Planetary Science Letters, 109: 585-591.
- 27. Marešová, Z., 1973. Geological setting and possibilities of uranium distribution in the area of Barrandian lower Palaeozoic (in Czech). Open File Report, Archive of the Czechoslovak Uranium Industry, Příbram.
- 28. März, Ch., Beckmann, B., Franke, Ch., Vogt, Ch., Wagner, T., Kasten, S., 2009. Geochemical environment of the Coniacian - -Santonian western tropical Atlantic at Demerara Rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 273: 286-301.
- 29. Melchin, M.J., Mitchell, C.E., Holmden, C., Štorch, P., 2013. Environmental changes in the Late Ordovician-early Silurian: review and new insights from black shales and nitrogen isotopes. GSA Bulletin, 125: 1635-1670.
- 30. Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735-1750.
- 31. Myers, K.J., Wignall, P.B. , 1987 . Understanding Jurassic organic-rich mud-rocks - new concepts using gamma ray spectrometry and palaeoecology: examples from the Kimmeridge clay of Dorset and the Jet rock of Yorkshire. In: Marine Clastic Sedimentology (eds. J.K. Leggett and G.G. Zuffa): 175-192. Graham and Trotman, London.
- 32. Pašava, J., 2000. Normal versus metal-rich black shales in the Barrandian NeoproterozoicoftheTeplá-Barrandian Unit :a summary with new data . Věstník Českého Geologického Ústavu , 75 : 229-239 .
- 33. Pašava , J. , Hladiková , J . , Dobeš , P. , 1996 . Origin of Proterozoic metal-rich black shales from the Bohemian Massif, Czech Republic. Economic Geology, 91: 63-79.
- 34. Porębska, E., Sawłowicz, Z., 1997. Palaeoceanographic linkage of geochemical and graptolite events across the Silurian-Devonian boundary in Bardzkie Mountains (Southwest Poland). Palaeogeography Palaeoclimatology Palaeoecology, 132: 343-354.
- 35. Rasmussen, B., Buick, R., Taylor, W.R., 1998. Removal of oceanic REE by authigenic precipitation of phosphatic minerals. Earth and Planetary Science Letters, 164: 135-149.
- 36. Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (U.S.A.). Chemical Geology, 206: 373-391.
- 37. Sugitani, K., Yamashita, F., Nagaoka, T., Minami, M., Yamamoto, K., 2006 . Geochemistry of heavily altered Archean volcanic and volcaniclastic rocks of the Warrawoona Group, at Mt. Goldsworthy in the Pilbara Craton , Western Australia: implications for alteration and origin. Geochemical Journal, 40: 523-535.
- 38. Štorch, P., 1994. Graptolite biostratigraphy of the Lower Silurian (Llandovery and Wenlock) of Bohemia. Geological Journal, 29: 137-165.
- 39. Štorch, P., 2006. Facies development, depositional settings and sequence stratigraphy across the Ordovician-Silurian boundary: a new perspective from Barrandian area of the Czech Republic. Geological Journal, 41: 163-192.
- 40. Štorch, P., Frýda, J., 2012. The late Aeronian graptolite sedgwickii Event, associated positive carbon isotope excursion and facies changes in the Prague Synform (Barrandian area, Bohemia). Geological Magazine, 149: 1089-1106.
- 41. Štorch, P., Pašava, J., 1989. Stratigraphy, chemistry and origin of the Lower Silurian black graptolitic shale of the Prague Basin, Barrandian, Bohemia. Věstník Českého Geologického Ústavu, 64: 143-162.
- 42. Taylor, S.R., McLennan, S.M., 1985. The Continental Crustal: its Composition and Evolution. Blackwell, Oxford.
- 43. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32.
- 44. Vandenbroucke, T.R.A., Emsbo, P., Munnecke, A., Nuns, N., Duponchel, L. , Lepot, K. , Quijada , M. , Paris , F. , Servais, T., Kießling , W. , 2015 . Metal-induced malformations in Early Palaeozoic plankton are harbingers of mass extinction. Nature Communications, 6: 7966.
- 45. Wignall, P.B., 1994. Black Shales. Oxford University Press, New York.
- 46. Wignall, P.B., Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272: 1155-1158.
- 47. Wright, J., Schrader, H., Holser, W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cos mochi mica Acta, 51: 631-644.
- 48. Yan, D.T., Chen, D.Z., Wang, Q.Ch., Wang, J.G. , 2009 . Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform, South China. Science in China, Series D-Earth Sciences, 52: 38-54.
- 49. Yarincik, K.M., Murray, R.W., Lyons, T.W., Peterson, L.C., Haug, G.H., 2000. Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15: 593-604.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52bf5bc6-6942-43a4-ad85-76d321791601