PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Passive Mixer-based UWB Receiver with Low Loss, High Linearity and Noise-cancelling for Medical Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A double balanced passive mixer-based receiver operating in the 3-5 GHz UWB for medical applications is described in this paper. The receiver front-end circuit is composed of an inductorless low noise amplifier (LNA) followed by a fully differential voltage-driven double-balanced passive mixer. A duty cycle of 25% was chosen to eliminate overlap between LO signals, thereby improving receiver linearity. The LNA realizes a gain of 25.3 dB and a noise figure of 2.9 dB. The proposed receiver achieves an IIP3 of 3.14 dBm, an IIP2 of 17.5 dBm and an input return loss (S11) below -12.5dB. Designed in 0.18μm CMOS technology, the proposed mixer consumes 0.72pW from a 1.8V power supply. The designed receiver demonstrated a good ports isolation performance with LO_IF isolation of 60dB and RF_IF isolation of 78dB.
Słowa kluczowe
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Systems Integration & Emerging Energies Laboratory, Electrical Engineering Department, National Engineers School of Sfax, University of Sfax, Sfax, Tunisia
  • Systems Integration & Emerging Energies Laboratory, Electrical Engineering Department, National Engineers School of Sfax, University of Sfax, Sfax, Tunisia
Bibliografia
  • [1] L. Xia, K. Shao, H. Chen, Y. Huang, Z. Hong, and P. Y. Chiang, “0.15-nJ/b 3–5-GHz IR-UWB system with spectrum tunable transmitter and merged-correlator noncoherent receiver,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp. 1147-1156, 2011. http://doi.org/10.1109/TMTT.2011.2114193.
  • [2] L. Liu, T. Sakurai, and M. Takamiya, “A charge-domain auto-and cross-correlation based data synchronization scheme with power-and area-efficient PLL for impulse radio UWB receiver,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1349-1359, 2011. http://doi.org/10.1109/JSSC.2011.2128210.
  • [3] Jihai Duan, Q. Hao2, Y. Zheng, B. Wei, W. Xu, and S. Xu, “Design of an Incoherent IR-UWB Receiver Front-End in 180-nm CMOS Technology.” 16th IEEE International Symposium on Quality Electronic Design (ISQED), pp. 186-190, 2015. http://doi.org/10.1109/ISQED.2015.7085422.
  • [4] B. Shi and M. Y. W. Chia, “Design of a CMOS UWB receiver front-end with noise cancellation and current-reuse,” in 2010 IEEE International Conference on Ultra-Wideband, vol. 1, pp. 1–4, 2010. http://doi.org/10.1109/ICUWB.2010.5614618.
  • [5] H. Trabelsi, I. Barraj, and M. Masmoudi, “A 3–5 GHz FSK-UWB transmitter for wireless personal healthcare applications,” AEU-International J. Electron. Commun., vol. 69, no. 1, pp. 262–273, 2015. http://doi.org/10.1016/j.aeue.2014.09.009.
  • [6] B. Saif and T. Hatem, “Low-complexity passive mixer-based UWB pulse generator with leakage compensation and spectrum Tunability,” in 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), pp. 1-5, 2020. http://doi.org/10.1109/DTS48731.2020.9196120.
  • [7] S. Benali and H. Trabelsi, “Analysis of device mismatches effect on the performance of UWB-Ring VCO,” in 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 814-818, 2020. http://doi.org/10.1109/SSD49366.2020.9364258 [8] R. S. Rao, Microwave engineering. PHI Learning Pvt. Ltd., 2015.
  • [9] B. Razavi and R. Behzad, RF microelectronics, vol. 2. Prentice hall New York, 2012.
  • [10] B. Razavi et al., “A 0.13/spl mu/m CMOS UWB transceiver,” in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, pp. 216–594, 2005.\http://doi.org/10.1109/ISSCC.2005.1493946.
  • [11] C. Sandner et al., “A wimedia/mboa-compliant cmos rf transceiver for uwb,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2787-2794, 2006. http://doi.org/10.1109/JSSC.2006.884804.
  • [12] Y. Zheng et al., “A CMOS carrier-less UWB transceiver for WPAN applications,” in 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers, pp. 378-387, 2006. http://doi.org/10.1109/ISSCC.2006.1696069.
  • [13] E. C. M. Association, “High rate ultra wideband PHY and MAC standard,” Stand. ECMA-368 2nd Ed., 2007.
  • [14] M. Y. Algumaei, N. A. Shairi, Z. Zakaria, and I. M. Ibrahim, “Review of mixer and balun designs for UWB applications,” Int. J. Appl. Eng. Res., vol. 12, no. 17, pp. 6514-6522, 2017.
  • [15] F. Marki and C. Marki, “Mixer basics primer,” Marki Microw., 2010.
  • [16] H. Khosravi, A. Bijari, N. Kandalaft and J. Cabral, "A Low Power Concurrent Dual-Band Low Noise Amplifier For WLAN Applications," 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1118-1123, 2019. http://doi.org/10.1109/IEMCON.2019.8936211.
  • [17] R. Bagheri et al., “An 800-MHz–6-GHz software-defined wireless receiver in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2860-2876, 2006. http://doi.org/10.1109/JSSC.2006.884835.
  • [18] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275-282, 2004. http://doi.org/10.1109/JSSC.2003.821786.
  • [19] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “Wideband balun-LNA with simultaneous output balancing, noise canceling and distortion-canceling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, 2008. http://doi.org/10.1109/JSSC.2008.922736.
  • [20] C.-F. Liao and S.-I. Liu, “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329-339, 2007. http://doi.org/10.1109/CICC.2005.1568632.
  • [21] B. Mouna, B. Saif, B. Ghazi, and T. Hatem, “Analysis and Optimization of RF Front-End for MICS Band Receiver,” in 2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), pp. 1-5, 2019. http://doi.org/10.1109/DTSS.2019.8914911.
  • [22] W. Xie, X. Li, and X. Long, “Underground Operator Monitoring Platform Based on Ultra-Wide Band WSN.,” Int. J. Online Eng., vol. 14, no. 10, 2018.
  • [23] M. U. Nair, Y. Zheng, C. W. Ang, Y. Lian, X. Yuan and C. -H. Heng, "A Low SIR Impulse-UWB Transceiver Utilizing Chirp FSK in 0.18 μm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 11, pp. 2388-2403, Nov. 2010, http://doi.org/10.1109/JSSC.2010.2074232.
  • [24] Z. Zou et al., “A low-power and flexible energy detection IR-UWB receiver for RFID and wireless sensor networks,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 58, no. 7, pp. 1470-1482, 2011. http://doi.org/10.1109/TCSI.2011.2142930.
  • [25] T. A. Vu, H. A. Hjortland, O. Nass, and T. S. Lande, “A 3-5 GHz IR-UWB receiver front-end for wireless sensor networks,” Proceedings - IEEE International Symposium on Circuits and Systems. pp. 2380-2383, 2013, http://doi.org/10.1109/ISCAS.2013.6572357.
  • [26] G. Cusmai, M. Brandolini, P. Rossi and F. Svelto, "A 0.18-μm CMOS Selective Receiver Front-End for UWB Applications," in IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1764-1771, Aug. 2006, http://doi.org/10.1109/JSSC.2006.877256.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52bb54a7-fd2f-423d-b704-6723fe62e67e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.