PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Behavior and Decomposition Kinetics of RDX and RDX/HTPB Composition Using Various Techniques and Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the thermal behavior and decomposition kinetics of trinitrohexahydrotriazine (RDX) and its polymer bonded explosive (PBX) containing a hydroxyl-terminated polybutadiene (HTPB) based polyurethane binder in the ratio 80% RDX/ 20% HTPB were investigated using various experimental techniques and analytical methods. The HTPB polyurethane matrix contains other additives and was cured using hexamethylene diisocyanate (HMDI). Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Vacuum Stability Test (VST) and Ignition Delay Techniques were applied both isothermally and non-isothermally. The kinetic parameters were determined using both the isoconversional (model free) and the model-fitting methods. For comparison, Advanced Kinetics and Technology Solution (AKTS) software was also used. It was found that the addition of an HTPB-based polyurethane matrix to pure RDX decreased its decomposition temperature. It was also found that RDX/HTPB has a lower activation energy than pure RDX. The polyurethane matrix had a significant effect on the decomposition mechanism of RDX resulting in different reaction models. It was concluded that the activation energies obtained using the Ozawa, Flynn, and Wall (OFW) and Kissinger-Akahira-Sunose (KAS) methods were very close to the results obtained via the AKTS software lying in the range 218.3-220.2 kJ•mol−1. The VST technique yielded kinetic parameters close to those obtained using TG/DTG. On the other hand, the Ignition Delay Technique yielded different and inconsistent kinetic parameters.
Słowa kluczowe
Rocznik
Strony
714--735
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
autor
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
autor
  • Military Technical College, Kobry Elkobbah, Cairo, Egypt
Bibliografia
  • [1] Kubota N., Propellants and explosives: Thermochemical Aspects of Combustion, John Wiley & Sons, 2002; ISBN 3527302107.
  • [2] Agrawal J., High Energy Materials: Propellants, Explosives and Pyrotechnics, John Wiley & Sons, 2010; ISBN 3527326103.
  • [3] Talawar M., Sivabalan R., Mukundan T., Muthurajan H., Sikder A.K., Gandhe B.R., Rao A.S., Environmentally Compatible Next Generation Green Energetic Materials (GEMs), J. Hazard. Mater., 2009, 161, 589-607.
  • [4] Badgujar D., Talawar M., Asthana S., Mahulikar P., Advances in Science and Technology of Modern Energetic Materials: an Overview, J. Hazard. Mater., 2008, 151, 289-305.
  • [5] An C., Li F., Song X., Wang Y., Guo X., Surface Coating of RDX with a Composite of TNT and an Energetic-Polymer and its Safety Investigation, Propellants Explos. Pyrotech., 2009, 34, 400-405.
  • [6] Elbeih A., Pachman J., Trzcinski W., Zeman S., Akstein Z., Selesovsky J., Study of Plastic Explosives Based on Attractive Cyclic Nitramines, Part I. Detonation Characteristics of Explosives with PIB Binder, Propellants Explos. Pyrotech., 2011, 36(5), 433.
  • [7] Elbeih A., Pachman J., Zeman S., Vavra P., Trzcinski W., Akstein Z., Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(methyl methacrylate) Binders, J. Energ. Mater., 2011, 30(4), 358.
  • [8] Elbeih A., Pachman J., Zeman S., Akštein Z., Replacement of PETN by BicycloHMX in Semtex 10, Problems of Mechatronics, 2010, 2(2), 7.
  • [9] Elbeih A., Pachman J., Zeman S., Trzciński W.A., Akštein Z., Advanced Plastic Explosive Based on BCHMX Compared with Composition C4 and Semtex 10, New Trends Res. Energ. Mater., Proc. Semin., 14th, Pardubice, Czech Republic, 2011, 119.
  • [10] Elbeih A., Zeman, S., Jungova M., Vavra P., Attractive Nitramines and Related PBXs, Propellants Explos. Pyrotech., 2013, 38(3), 379.
  • [11] Elbeih A., Zeman, S., Jungova M., Akstein Z., Effect of Different Polymeric Matrices on Sensitivity and Performance of Interesting Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2012, 9(2), 17.
  • [12] Elbeih A., Zeman S., Jungova M., Vavra P., Akstein Z., Effect of Different Polymeric Matrices on Some Properties of Plastic Bonded Explosives, Propellants Explos. Pyrotech., 2012, 37(6), 676.
  • [13] Elbeih A., Zeman, S., Pachman J., Effect of Polar Plasticizers on the Characteristics of Selected Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2013, 10(3), 339.
  • [14] Elbeih A., Zeman S., Jungová M., Akštein Y., Vávra P., Detonation Characteristics and Penetration Performance of Plastic Explosives, in: Proc. 2011 Int. Autumn Seminar on Propellants, Explosives and Pyrotechnics, (Li S., Niu P., Eds.), Nanjing, Sept. 20-23, 2011, Theory and Practice of Energetic Materials, Vol. IX, Sci. Press, Beijing, 2011, pp. 508-513.
  • [15] Mulage K., Patkar R., Deuskar V., Studies on a Novel Thermoplastic Polyurethane as a Binder for Extruded Composite Propellants, Cent. Eur. J. Energ. Mater., 2007, 4, 233-245.
  • [16] Celina M., Minier L., Assink R., Development and Application of Tools to Characterize the Oxidative Degradation of AP/HTPB/Al Propellants in a Propellant Reliability Study, Thermochim. Acta, 2002, 384, 343.
  • [17] Chen F., Duo Y., Luo S., Luo Y., Tan H., Novel Segmented Thermoplastic Polyurethanes Elastomers Based on Tetrahydrofuran Ethylene Oxide Copolyethers as High Energetic Propellant Binders, Propellants Explos. Pyrotech., 2003, 28, 7-11.
  • [18] Adnan H., Investigation of the Service Life of Binders Used in Rocket Propellants and High Explosives, Msc Thesis, Military Technical College, Cairo, 1999.
  • [19] Yan Q.-L., Zeman S., Selesovsky J., Svoboda R., Elbeih A., Thermal Behaviour and Decomposition Kinetics of Formex-bonded Explosives Containing Different Cyclic Nitramines, J. Therm. Anal. Calorim., 2013, 111, 1419.
  • [20] Yan Q.-L., Zeman S., Svoboda R., Elbeih A., Thermodynamic Properties, Decomposition Kinetics and Reaction Models of BCHMX and its Formex Bonded Explosive, Thermochim. Acta, 2012, 547, 150.
  • [21] Yan Q.-L., Zeman S., Elbeih A., Recent Advances in Thermal Analysis and Stability Evaluation of Insensitive Plastic Bonded Explosives (PBXs), Thermochim. Acta, 2012, 537, 1-12.
  • [22] Yan Q.-L., Zeman S., Zhao F., Elbeih A., Non-isothermal Analysis of C4 Bonded Explosives Containing Different Cyclic Nitramines, Thermochim. Acta, 2013, 556, 6.
  • [23] Yan Q.-L., Zeman S., Elbeih A., Thermal Behavior and Decomposition Kinetics of Viton A Bonded Explosives Containing Attractive Cyclic Nitramines, Thermochim. Acta, 2013, 562, 56.
  • [24] Yan Q.-L., Zeman S., Zang T., Elbeih A., Non-isothermal Decomposition Behaviour of Fluorel Bonded Explosives Containing Attractive Cyclic Nitramines, Thermochim. Acta, 2013, 574, 10.
  • [25] Yan Q.-L., Zeman S., Elbeih A., Zbynek A., The Influence of the Semtex Matrix on the Thermal Behaviour and Decomposition Kinetics of Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2013, 10(4), 509.
  • [26] Zeman S., Elbeih A., Yan Q.-L., Note on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in Formex P1, J. Therm. Anal. Calorim., 2013, 111, 1503.
  • [27] Zeman S., Elbeih A., Yan Q.-L., Notes on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in the C4 Matrix, J. Therm. Anal. Calorim., 2013, 112, 1433-1437.
  • [28] Vyazovkin S., Wight C., Model-free and Model-fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data, Thermochim. Acta, 1999, 340, 53-68.
  • [29] Singh G., Felix S., Soni P., Studies on Energetic Compounds Part 28: Thermolysis of HMX and its Plastic Bonded Explosives Containing Estane, Thermochim. Acta, 2003, 399, 153-165.
  • [30] Singh G., Felix S., Soni P., Studies on Energetic Compounds: Part 31. Thermolysis and Kinetics of RDX and Some of its Plastic Bonded Explosives, Thermochim. Acta, 2005, 426, 131-139.
  • [31] Manu S., Varghese T., Mathew S., Ninan K., Studies on Structure Property Correlation of Cross-linked Glycidyl Azide Polymer, J. Appl. Polymer Sci., 2009, 114, 3360-3368.
  • [32] Zeman S., Gazda Š., Štolcová A., Dimun A., Dependence on Temperature of the Results of the Vacuum Stability Test for Explosives, Thermochim. Acta, 1994, 247, 447-454.
  • [33] Khawam A., Flanagan D., Basics and Applications of Solid-state Kinetics: A Pharmaceutical Perspective, J. Pharmac. Sciences, 2006, 95, 472-498.
  • [34] Abd-Elghany M., Elbeih A., Hassanein S., Study of Decomposition Kinetics of Binder System Based on HTPB Using Different Techniques and Methods, New Trends Res. Energ. Mater.Proc. Semin., 18th, Czech Republic, 2015, 101.
  • [35] Vyazovkin S., Burnham A., Criado J., Pérez-Maqueda L., Popescu C., Sbirrazzuoli N., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 2011, 520, 1-19.
  • [36] Kissinger H., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, 1702-1706.
  • [37] Akahira T., Sunose T., Method of Determining Activation Deterioration Constant of Electrical Insulating Materials, Res. Report Chiba Inst. Technol. (Sci. Technol.), 1971, 16, 22-31.
  • [38] Starink M., The Determination of Activation Energy From Linear Heating Rate Experiments: a Comparison of the Accuracy of Isoconversion Methods, Thermochim. Acta, 2003, 404, 163-176.
  • [39] Vyazovkin S., Dollimore D., Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids, J. Chem. Inf. Comput. Sci., 1996, 36, 42-45.
  • [40] Doyle C., Kinetic Analysis of Thermogravimetric Data, J. Appl. Polym. Sci., 1961, 5, 285-292.
  • [41] Doyle C., Estimating Isothermal Life from Thermogravimetric Data, J. Appl. Polym. Sci., 1962, 6, 639-642.
  • [42] Doyle C., Series Approximations to the Equation of Thermogravimetric Data, 1965.
  • [43] Brown M., Introduction to Thermal Analysis: Techniques and Applications, Kluwer Academic Publishers, 2001, 181-214; ISBN 978-1-4020-0472-9.
  • [44] Yan Q.-L., Zeman S., Svoboda R., Elbeih A., Málek J., The Effect of Crystal Structure on the Thermal Iinitiation of CL-20 and its C4 Bonded Explosives (II): Models for Overlapped Reactions and Thermal Stability, J. Therm. Anal. Calorim., 2012.
  • [45] Vyazovkin S., Sbirrazzuoli N., Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers, Macromol. Rapid Commun., 2006, 27, 1515- 1532.
  • [46] Szala M., Sałaciński T., 2,4,6-Trinitrotoluene as a Source of Modern Explosives. Review (in Polish), High-Energetic Materials, 2015, 7, 125-143.
  • [47] Krupka M., Devices and Equipment for Testing of Energetic Materials, New Trends Res. Energ. Mater., Proc. Semin., 4th, Pardubice, Czech Republic, 2001.
  • [48] Khawam A., Flanagan D., Complementary Use of Model-free and Modelistic Methods in the Analysis of Solid-state Kinetics, J. Phys. Chem., 2005, 109, 10073- 10080.
  • [49] Zinn J., Rogers R., Thermal Initiation of Explosives1, J. Phys. Chem., 1962, 66, 2646-2653.
  • [50] AKTS; http://www.akts.com/akts-thermokinetics-tga-dsc-dta-tma-ftir-ms/download-tga-dsc-dta-tma-ms-ftir-akts-thermokinetics-software.html, 2012.
  • [51] Maksimov Yu.Ya., Thermal Decomposition of Hexogen and Octogen, Tr. Mosk. Khim.-Teknol. Inst. im. Mendeleeva, 1967, 53, 73-84.
  • [52] Manelis G., Nazin G., Prokudin V., Dependence of Thermal Stability of Energetic Compounds on Physicochemical Properties of Crystals, in: Successes in Special Chemistry and Chemical Technology, (Sinditskii V., Serushkin V., Shepelov G., Eds.), Khim.-Teknol. Univ. Mendeleeva, Moscow, 2010, 191.
  • [53] Dobratz B., Crawford P., LLNL Explosives Handbook − Properties of Chemical Explosives and Explosive Simulants, 1985, 6-90.
  • [54] Singh G., Prem Felix S., Pandey D., Agrawal J., Sikder A., Studies on Energetic Materials, Part 39: Thermal Analysis of a Plastic Bonded Explosives Containing RDX and HTPB, J. Therm. Anal. Calorim., 2005, 79, 631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52baaf38-32e7-4a30-935d-097a008ffb6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.