PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multivariate and Geostatistical Analyses of Groundwater Quality for Acid Rock Drainage at Waste Rock and Tailings Storage Site

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A multi-disciplinary approach is indispensable for adequate acid rock drainage (ARD), mineral leaching impact, and groundwater management. Groundwater is a valuable resource, and it is critical to protect as well as mitigate the effects of pollution such as ARD in the mining environment. Mine waste storage facilities (waste rocks and tailings) are potential ARD sources capable of degrading groundwater reserves. This research investigated and reported the application of a case study of multivariate statistical and spatial variability of selected parameters associated with ARD in groundwater around WRD and TSF at mine sites. Water quality analysis data of seventy water samples from 10 boreholes located at the WRD and TSF mine were utilised in this study. The correlation matrix and principal components analysis was applied to the data set to determine the associated variability in groundwater in relation to ARD. Geostatistical analysis was used to produce contour maps to ARD principal components of the study site, using ordinary kriging of the best fit models. The application of multivariate statistical and geospatial analysis in groundwater quality assessment with coupled soil and groundwater modelling of flow and transport at waste rock dump and tailings storage sites provides an essential tool for exploratory data analysis, and spatial extent determination of the relationship between various data sets significant to acid rock drainage.
Rocznik
Strony
203--216
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State Bloemfontein, 205 Nelson Mandela Dr, Park West, Bloemfontein, 9301, South Africa
  • Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State Bloemfontein, 205 Nelson Mandela Dr, Park West, Bloemfontein, 9301, South Africa
  • Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State Bloemfontein, 205 Nelson Mandela Dr, Park West, Bloemfontein, 9301, South Africa
Bibliografia
  • 1. Adadzi P.C. 2020. Geostatistics and Spatial Analysis of Groundwater Hydrochemistry near Leliefontein in the Northern Cape, South Africa. Journal of Ecological Engineering, 21(8), 243–260. https://doi.org/10.12911/22998993/126877
  • 2. Agboola O., Damilola E., Fayomi B.O.S.I., Sadiku E.R., Popoola P., Moropeng L., Yahaya A., Mamudu, O.A. 2020. A review on the impact of mining operation: Monitoring, assessment and management, Results in Engineering, 8, 100181. https://doi.org/10.1016/j.rineng.2020.100181
  • 3. Akcil A., Koldas S. 2006. Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of cleaner production, 14(12–13), 1139–1145.
  • 4. Allwright A., Witthueser K., Cobbing J., Mallory S., Sawunyama T. 2013. Development of a Groundwater Resource Assessment Methodology for South Africa: Towards a Holistic Approach. WRC Report No. 2048/1/13 ISBN 978-104312-0458-8
  • 5. Amini M.A., Torkan G., Eslamian S., Zareian M.J., Adamowski J.F. 2019. Analysis of deterministic and geostatistical interpolation techniques for mapping meteorological variables at large watershed scales. Acta Geophysica, 67(1), 191–203.
  • 6. Asghar F., Sun Z., Chen G., Zhou Y., Li G., Liu H., Zhao K. 2020. Geochemical characteristics and uranium neutral leaching through a CO2+ O2 system—An example from Uranium Ore of the ELZPA Ore Deposit in Pakistan. Metals, 10(12), 1616.
  • 7. Bao Z., Bain J., Holland S.P., Wilson D., MacKenzie P., Ptacek C.J., Blowes D.W. 2020. Faro Waste Rock Project: Characterizing geochemical heterogeneity in sulfide-and carbonate-rich waste rock. Applied Geochemistry, 121, 104691.
  • 8. Belkhiri L., Narany T.S. 2015. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29(6), 2073–2089.
  • 9. Benesty J., Chen J., Huang Y., Cohen I. 2009. Pearson correlation coefficient. In Noise reduction in speech processing (1–4). Springer, Berlin, Heidelberg.
  • 10. Bodrud-Doza M., Islam S.D.U., Rume T., Quraishi S.B., Rahman M.S., Bhuiyan M.A.H. 2020. Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka City dwellers in Bangladesh. Groundwater for Sustainable Development, 10, 100374.
  • 11. Chen F., Shen F., Song, J. 2015. Robust adaptive beamforming using low‐complexity correlation coefficient calculation algorithms. Electronics Letters, 51(6), 443–445.
  • 12. Clement C.R. 1982. A comparative geological study of some major kimberlite pipes in the Northern Cape and Orange Free State.
  • 13. Ekkerd J., Stiefenhofer J., Field M., Lawless P. 2003. The geology of Finsch mine, Northern Cape Province, South Africa. In International Kimberlite Conference: Extended Abstracts, 8.
  • 14. Emenike P.C., Nnaji C.C., Tenebe I.T. 2018. Assessment of geospatial and hydrochemical interactions of groundwater quality, southwestern Nigeria. Environmental monitoring and assessment, 190(7), 440.
  • 15. ESRI. 2019. Introduction to modelling spatial processes using geostatistical analysis.
  • 16. Fraser K.J., Hawkesworth C.J. 1992. The petrogenesis of group 2 ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos, 28(3–6), 327–345.
  • 17. Gómez-Arias A., Yesares L., Caraballo M.A., Maleke M., Vermeulen D., Nieto J.M., Van Heerden E., Castillo J. 2021. Environmental and geochemical characterization of alkaline mine wastes from Phalaborwa (Palabora) Complex, South Africa. Journal of Geochemical Exploration, 224, 106757.
  • 18. Heikkinen P.M., Korkka-Niemi K., Lahti M., Salonen V.P. 2002. Groundwater and surface water contamination in the area of the Hitura nickel mine, Western Finnland. Environmental Geology 42, 313–329.
  • 19. Hosseini E., Gholami R., Hajivand F. 2019. Geostatistical modeling and spatial distribution analysis of porosity and permeability in the Shurijeh-B reservoir of Khangiran gas field in Iran. J Petrol Explor Prod Technol, 9, 1051–1073.
  • 20. Jha M.K., Shekhar A., Jenifer M.A. 2020. Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Research, 179, 115867.
  • 21. Jiang Y., Gui H., Yu H., Wang M., Fang H., Wang C., Chen C., Zhang Y., Huang Y. 2020. Hydrochemical characteristics and water quality evaluation of rivers in different regions of cities: a case study of Suzhou City in Northern Anhui Province, China. Water, 12(4), 950.
  • 22. Karami S., Madani H., Katibeh H., Fatehi Marj A. 2018. Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches. Applied water science, 8(1), 1–13.
  • 23. Midgley D.C., Pitman, W.V., Middleton B.J. 1997. Surface water resources of South Africa 1990, Volume VI. Water Research Commission, Pretoria, Report 298/6.1/94.
  • 24. Molson J., Aubertin M., Bussière B. 2012. Reactive transport modelling of acid mine drainage within discretely fractured porous media: Plume evolution from a surface source zone. Environmental Modelling & Software, 38, 259–270.
  • 25. Naudet V., Revil A., Rizzo E., Bottero J.Y., Bégassat P. 2004. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences, 8(1), 8–22.
  • 26. Patil V.H., Singh S.N., Mishra S., Donavan D.T. 2008. Efficient theory development and factor retention criteria: Abandon the ‘eigenvalue greater than one’criterion. Journal of Business Research, 61(2), 162–170.
  • 27. Rabah F.K., Ghabayen S.M., Salha A.A. 2011. Effect of GIS interpolation techniques on the accuracy of the spatial representation of groundwater monitoring data in Gaza Strip. Journal of Environmental Science and Technology, 4(6), 579–589.
  • 28. Ram A., Tiwari S.K., Pandey, H.K., Chaurasia A.K., Singh S., Singh, Y.V. 2021. Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11(2), 1–20.
  • 29. Rata M., Douaoui A., Larid M., Douaik, A. 2020. Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theoretical and Applied Climatology, 141(3), 1009–1024.
  • 30. Safarbeiranvnd M., Amanipoor H., Battaleb-Looie S. 2018. Quality Evaluation of Groundwater Resources using Geostatistical Methods (Case Study: Central Lorestan Plain, Iran). Water Resour Manage 32, 3611–3628. https://doi.org/10.1007/s11269-018-2009-2
  • 31. Scholz R.W., Schnabel U. 2006. Decision making under uncertainty in case of soil remediation. Journal of Environmental Management, 80(2), 132–147.
  • 32. Sideri D., Roumpos C., Pavloudakis F., Paraskevis N., Modis, K. 2020. Multivariate Geostatistical Modeling of Lower Calorific Value in Multi-Seam Coal Deposits. Applied Sciences, 10(18), 6208.
  • 33. Smith C.B. 1983a. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature, 304(5921), 51–54.
  • 34. Smith C.B., Allsop H.L., Kramers J.D., Hutchinson G., Roddick, J.C. 1985. Emplacement ages of Jurassic-Cretaceous South African kimberlites by the Rb-Sr method on phlogopite and whole-rock samples. Transactions of the Geological Society of South Africa, 88(2), 249–266.
  • 35. Sracek O., Choquette M., Gélinas P., Lefebvre R., Nicholson, R.V. 2004. Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec, Canada. Journal of contaminant hydrology, 69(1–2), 45–71.
  • 36. Theocharopoulos S.P., Mitsios I.K., Arvanitoyannis I. 2004. Traceabilty of environmental soil measurements. TrAC Trends in Analytical Chemistry, 23(3), 237–251.
  • 37. Tziritis E., Pisinaras V., Panagopoulos A., Arampatzis G. 2021. RIVA: a new proposed method for assessing intrinsic groundwater vulnerability. Environmental Science and Pollution Research, 28(6), 7043–7067.
  • 38. Uddameri V., Honnungar V., Hernandez E.A. 2014. Assessment of groundwater water quality in central and southern Gulf Coast aquifer, TX using principal component analysis. Environmental earth sciences, 71(6), 2653–2671.
  • 39. Varmaghani A., Eichinger W.E., Prueger J.H. 2021. A meteorological‐based crop coefficient model for estimation of daily evapotranspiration. Hydrological Processes, 35, 14025.
  • 40. Vriens B., Plante B., Seigneur N., Jamieson H. 2020. Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals, 10(9), 728.
  • 41. Wahsha M., Nadimi-Goki M., Bini C. 2016. Land contamination by toxic elements in abandoned mine areas in Italy. J Soils Sediments, 16, 1300–1305.
  • 42. Webb J.A., Sasowsky D. 1994, The interaction of acid mine drainage with a carbonate terrane: evidence from the Obey River, north-central Tennessee. Journal of Hydrology, 161, 327–346.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52b7f01a-e35c-4a6c-a5e3-85fecc69cabd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.