Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, stir casting process was employed to incorporate a blend mixture of ilmenite (FeTiO3) and boron carbide (B4C) particles in the matrix of LM13 base alloy. The study demonstrated the effect of individual reinforcement, weight percentage and mixing proportion on wear behaviour of LM13 alloy for brake rotor applications. Composite with 15 wt.% of reinforcement having 75% proportion of boron carbide (15BI-31 composite) shows change in silicon morphology to globular and highest refinement of silicon structure. Highest wear resistance, highest hardness, lowest coefficient of thermal expansion and lowest friction coefficient values were obtained for 15BI-31 composites. The addition of ilmenite particles enhances the properties of BI composites by making the strong interfacial bonding and enhancing the oxidation rate of sliding surface. However, the increase in dislocation density by boron carbide particles helps in enhancing the hardness of composites which contributes in providing the stability to mechanical mixed layer. The comparable wear property (17% higher wear rate), low processing cost and low material cost of 15BI-31 composite make it a suitable material for brake rotor applications. The predominant wear mechanism for composites was observed to be abrasive wear and delamination wear. However, the severity of wear mechanism changes as the applied load increases.
Czasopismo
Rocznik
Tom
Strony
art. no. e47, 2023
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
autor
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
autor
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
Bibliografia
- 1. Tayyebi M, Alizadeh M. A novel two-step method for producing Al/Cu functionally graded metal matrix composite. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2022.165078.
- 2. Huang J, Tayyebi M, Assari AH. Effect of SiC particle size and severe deformation on mechanical properties and thermal conductivity of Cu/Al/Ni/SiC composite fabricated by ARB process. J Manuf Process. 2021;68:57-68. https://doi.org/10.1016/j.jmapro.2021.07.017.
- 3. Wang Y, Tayyebi M, Assari A. Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-laminated composites produced by cross-accumulative roll-bonding process. Arch Civ Mech Eng. 2022;22:49. https://doi.org/10.1007/s43452-021-00355-8.
- 4. Tayyebi M, Rahmatabadi D, Adhami M, Hashemi R. Influence of ARB technique on the microstructural, mechanical and fracture properties of the multilayered Al1050/Al5052 composite reinforced by SiC particles. J Mater Res Technol. 2019;8:4287-301. https://doi.org/10.1016/j.jmrt.2019.07.039.
- 5. Gupta R, Sharma S, Nanda T, Pandey OP. A comparative study of dry sliding wear behaviour of sillimanite and rutile reinforced LM27 aluminium alloy composites. Mater Res Express. 2020. https://doi.org/10.1088/2053-1591/ab61a2.
- 6. Gupta R, Sharma S, Nanda T, Pandey OP. Wear studies of hybrid AMCs reinforced with naturally occurring sillimanite and rutile ceramic particles for brake-rotor applications. Ceram Int. 2020;46:16849-59. https://doi.org/10.1016/j.ceramint.2020.03.262.
- 7. Gupta R, Nanda T, Pandey OP. Comparison of wear behaviour of LM13 Al-Si alloy based composites reinforced with synthetic (B4C) and natural (ilmenite) ceramic particles. Trans Nonferrous Met Soc China. 2021;31:3613-25. https://doi.org/10.1016/S1003-6326(21)65752-7.
- 8. Gupta R, Nanda T, Pandey OP. Effect of high operating temperatures on the wear characteristics of boron carbide and ilmenite reinforced LM13 alloy based composites. J Tribol. 2022. https://doi.org/10.1115/1.4054318.
- 9. Mahmoud ERI, Takahashi M, Shibayanagi T, Ikeuchi K. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear. 2010;268:1111-21. https://doi.org/10.1016/j.wear.2010.01.005.
- 10. Rejil CM, Dinaharan I, Vijay SJ, Murugan N. Microstructure and sliding wear behavior of AA6360(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate. Mater Sci Eng A. 2012;552:336-44. https://doi.org/10.1016/j.msea.2012.05.049.
- 11. Umanath K, Palanikumar K, Selvamani ST. Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Compos Part B. 2013;53:159-68. https://doi.org/10.1016/j.compositesb.2013.04.051.
- 12. Zhang Z, Topping T, Li Y, Vogt R, Zhou Y, Haines C, Paras J, Kapoor D, Schoenung JM, Lavernia EJ. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr Mater. 2011;65:652-5. https://doi.org/10.1016/j.scriptamat.2011.06.037.
- 13. Kalaiselvan K, Murugan N, Parameswaran S. Production and characterization of AA6061-B4C stir cast composite. Mater Des. 2011;32:4004-9. https://doi.org/10.1016/j.matdes.2011.03.018.
- 14. Kaur K, Pandey OP. Microstructural characteristics of spray formed zircon sand reinforced LM13 composite. J Alloys Compd. 2010;503:410-5. https://doi.org/10.1016/j.jallcom.2010.04.249.
- 15. Shorowordi KM, Haseeb ASMA, Celis JP. Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures. Wear. 2006;261:634-41. https://doi.org/10.1016/j.wear.2006.01.023.
- 16. Fadavi Boostani A, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Azari Khosroshahi R, Taherzadeh Mousavian R, Xu J, Zhang X, Gong D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos Part A Appl Sci Manuf. 2015;68:155-63. https://doi.org/10.1016/j.compositesa.2014.10.010.
- 17. Wannasin J, Flemings MC. Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process. J Mater Process Technol. 2005;169:143-9. https://doi.org/10.1016/j.jmatprotec.2005.03.004.
- 18. Rohatgi PK, Pasciak K, Narendranath CS, Ray S, Sachdev A. Evolution of microstructure and local thermal conditions during directional solidification of A356-SiC particle composites. J Mater Sci. 1994;29:5357-66. https://doi.org/10.1007/BF01171548.
- 19. Tham LM, Gupta M, Cheng L. Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium-silicon carbide composites. Acta Mater. 2001;49:3243-53. https://doi.org/10.1016/S1359-6454(01)00221-X.
- 20. Sharma S, Gupta R, Nanda T, Pandey OP. Influence of two different range of sillimanite particle reinforcement on tribological characteristics of LM30 based composites under elevated temperature conditions. Mater Chem Phys. 2021. https://doi.org/10.1016/j.matchemphys.2020.123988.
- 21. Hayun S, Dilman H, Dariel MP, Frage N. The effect of aluminum on the microstructure and phase composition of boron carbide infiltrated with silicon. Mater Chem Phys. 2009;118:490-5. https://doi.org/10.1016/j.matchemphys.2009.08.023.
- 22. Prasad DS, Shoba C, Ramanaiah N. Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol. 2014;3:79-85. https://doi.org/10.1016/j.jmrt.2013.11.002.
- 23. Nyanor P, El-Kady O, Yehia HM, Hamada AS, Hassan MA. Effect of bimodal-sized hybrid TiC-CNT reinforcement on the mechanical properties and coefficient of thermal expansion of aluminium matrix composites. Met Mater Int. 2021;27:753-66. https://doi.org/10.1007/s12540-020-00802-w.
- 24. Wagih A, Abu-Oqail A, Fathy A. Effect of GNPs content on thermal and mechanical properties of a novel hybrid Cu-Al2O3/GNPs coated Ag nanocomposite. Ceram Int. 2019;45:1115-24. https://doi.org/10.1016/j.ceramint.2018.10.001.
- 25. Bhowmik A, Dey D, Biswas A. Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB2 dispersed aluminium matrix composite. SILICON. 2022;14:1133-46. https://doi.org/10.1007/s12633-020-00923-2.
- 26. He T, Lu T, Ciftci N, Tan H, Uhlenwinkel V, Nielsch K, Scudino S. Mechanical properties and tribological behavior of aluminum matrix composites reinforced with Fe-based metallic glass particles: Influence of particle size. Powder Technol. 2020;361:512-9. https://doi.org/10.1016/j.powtec.2019.11.088.
- 27. Hosseini N, Karimzadeh F, Abbasi MH, Enayati MH. A comparative study on the wear properties of coarse-grained Al6061 alloy and nanostructured Al6061-Al2O3 composites. Tribol Int. 2012;54:58-67. https://doi.org/10.1016/j.triboint.2012.04.020.
- 28. Zhu H, Jar C, Song J, Zhao J, Li J, Xie Z. High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al3Zr+α-Al2O3)/Al. Tribol Int. 2012;48:78-86. https://doi.org/10.1016/j.triboint.2011.11.011.
- 29. Lin F, Wang J, Wu H, Jia F, Lu Y, Ren M, Yang M, Chen Z, Jiang Z. Synergistic effects of TiC and graphene on the microstructure and tribological properties of Al2024 matrix composites. Adv Powder Technol. 2021;32:3635-49. https://doi.org/10.1016/j.apt.2021.08.015.
- 30. Lakshmikanthan A, Bontha S, Krishna M, Koppad PG, Ramprabhu T. Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. J Alloys Compd. 2019;786:570-80. https://doi.org/10.1016/j.jallcom.2019.01.382.
- 31. Manikandan R, Arjunan TV, Pdsfsdh ARNO. Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075). Hyb Metal Matr Comp. 2020. https://doi.org/10.1016/j.compositesb.2019.107668.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52b271b1-625f-46e8-8389-d51031f35e69