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Abstract: We examin empirical performances of two alterna-
tive robust optimization models, namely the worst-case conditional
value-at-risk (worst-case CVaR) model and the nominal conditional
value-at-risk (CVaR) model in crisis periods. Both models are based
on historical value-at-risk methodology. These performances are
compared by using a portfolio constructed on the basis of daily clos-
ing values of different stock indices in developed markets using data
from 1990 to 2013. An empirical evidence is produced with Ro-
bustRisk software application. Both a Monte-Carlo simulation and
an out-of-sample test show that robust optimization with worst-case
CVaR model outperforms the nominal CVaR model in the crisis peri-
ods. However, the trade-off between model misspecification risk and
return maximization depending on the market movements should be
optimized in a robust model selection.

Keywords: robust control procedures, RobustRisk, portfolio
optimization, Monte Carlo simulation, global crisis

1. Motivation

The background of robust procedures dates back to the 1960s and 1970s (Ells-
berg, 1961; Jacobson, 1973; Kreps and Porteus 1978; Whittle, 1981). However,
their applications in economics and finance literature have not succeeded un-
til the last decade with improvements in financial software applications. A
promising literature on robust portfolio optimization to minimize any model
misspecification in risk estimation has recently emerged. This paper aims to
provide an empirical evidence on performance of robust portfolio optimization
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models in crisis period on advanced markets. These models can be discussed
under alternative portfolios but as impacts of the recent global crisis have been
mostly observed in the advanced markets, the hypothetical portfolio elaborated
in this paper is constructed by using daily returns on stock market indices from
the US, the UK, Japan, Germany and France from 1990 and 2013.

Two alternative robust portfolio optimization methodologies are employed
for empirical tests in this paper. Namely, the performance of worst-case CVaR
with mixture uncertainty proposed by Zhu and Fukushima (2009) is compared
with the performance of (nominal) CVaR introduced by Rockafellar and Uryasev
(2000). Mixture uncertainty set is more proper for discrete data like time series
of stock exchange indices and is preferred in worst-case CVaR methodology.
The test results are produced by RobustRisk software application developed
by Ozun and Balcilar (2013). Researchers can reproduce the results contained
in this article, as well as perform empirical results for their own portfolios by
means of RobustRisk software which is freely available for academic purposes
on the internet.

The empirical findings show that worst-case robust portfolio optimization
provides insurance for portfolio return in crisis periods. The out of sample
performances of worst-case CVaR model compared to the nominal CVaR model
support the conclusion that trade-off between risk and return should be carefully
considered in market risk management where the worst–case can actually occur.
The empirical analysis that treats the recent global crisis as worst-case and
performs model applications on the advanced markets where the impacts of
crisis have been more severe, demonstrates the fact that the nominal value-at-
risk model might not be sufficient to capture the market risk.

A short but clear presentation of worst-case CVaR methodology is given in
the next section. In the third section, the hypothetical portfolios constructed
for empirical tests are introduced, and descriptive statistics for each stock mar-
ket index are discussed. Empirical evidence with its implications for practical
finance is discussed in the fourth section. The paper ends with conclusions and
suggestions for future research. It offers two main contributions to the finance
literature. Firstly, it provides empirical evidence on performance of the robust
risk models in advanced markets in the recent crisis periods. This evidence has
certain implications for portfolio and risk management practitioners, which are
discussed in the empirical evidence section. Secondly, it uses a recently devel-
oped software application called RobustRisk. The paper provides an example of
how to produce and interpret empirical results on robust portfolio optimization
models with RobustRisk, which is freely available for academic purposes. The
data used in this paper are also available on the same web-page and the re-
searchers and practitioners can produce the same results themselves when they
load RobustRisk on their computers.
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2. Methods for robust portfolio optimization

This empirical paper compares the performance of two robust portfolio opti-
mization methods, namely the nominal CVaR (Rockafellar and Uryasev, 2000)
and the worst-case CVaR with mixture distribution uncertainty set (Zhu and
Fukushima, 2009) in crisis periods. In the worst-case CVaR, we prefer to use the
mixture distribution uncertainty set. Portfolio optimizations are based on time
series data of financial assets, and mixture distribution uncertainty set fits con-
tinuous time series characteristics better than the discrete distributions. Since
our motivation is empirical rather than methodological, we present portfolio
optimization methodology with worst-case CVaR, briefly. Its derivation from
a loss function in basic value-at-risk model can be found in Ozun and Balcilar
(2013). Portfolio optimization with CVaR aims to achieve asset weights in the
portfolio, x, that minimize the pre-defined limitations. In this case, as the lim-
itation is conditional value-at-risk, the target is to find x values that minimize
the conditional value-at-risk. The minimization function can be defined as in
equation (1).

min
x∈X

(CV aRβ(x)) = min
(x,α)∈XxR

(

α+
1

1− β

∫ ∞

y∈Rm

[f(x, y)− α]+p(y)d(y)

)

(1)

In the function, x and y vectors, which have m dimension, represent asset
weights and their returns, respectively. The function p(y) represents the prob-
ability of given return, y, while β is the confidence level for x asset weights.
The loss function for asset weight (x) and their returns (y) is shown as f . The
minimum boundary of loss value is shown as α. The special function under the
integral in the equation (1), is defined as [t]+ = max(t, 0).

When the integral in the equation is transformed into a definite sum, and
uk term for transformation is used as shown in equation (2), equation (1) can
be re-defined as equation (3).

uk = [f(x, yk)− α]+ (2)

min
x∈X

(CV aRβ(x)) = min
(x,α)∈XxR

(

α+
1

1− β

S
∑

k=1

ukπk

)

. (3)

In equation (3), S refers to the total number of observations, πk refers to
the probability of kth observation. If the distribution of returns is known for
k, by using the probability density function of the distribution, values can be
produced in a parametric model. Alternatively, equal probability assumption
can be pre-defined, πk = 1/S, as used in Rockafellar and Uryasev (2000).

The set of X consists of all possible asset weights, x. To limit this set, the
sum of weights can be defined as 1, each individual weight can be appointed
as higher than zero, or certain special requirements on asset weights can be
described. The inputs, target, limitations and the output can be formalized as
equations (4)-(10).
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Inputs:

y, β, µ, π (4)

Target:

min

(

α+
1

1− β
uTπ

)

(5)

Limitations:

x ∈ X (6)

uk ≥ f(x, yk)− α k = 1..S (7)

uk ≥ 0 (8)

xT ȳ ≥ µ (9)

Outputs:

α, u, x. (10)

The first limitation defined through equation (6) sets the conditions for asset
weights; the sum of the weights should be 1, and each weight should be positive.
Limitations in equations (7) and (8) stem from the fact that vector of u equals
to the defined special function because according to the definition of the special
function, when the function input is negative, output should be zero, otherwise,
it should be equal to the input itself. In this framework, each u value should
be equal or higher than zero, and u value should be equal or higher than the
function input. The last limitation defined in equation (9) guarantees a total
return equal or higher than a desired amount (µ) in the optimization. In this
equation, the mean value of return vector is shown as ȳ .

In robust optimization under worst-case conditional value-at-risk model, the
target is to find the asset weights in the portfolio that minimize the worst-
case conditional value-at-risk. The risk weights are calculated with following
equation:

min
x∈X

(WCV aRβ(x)) =

min
(x,α,θ)∈XxRxR

(

θ : α+
1

1− β

∫ ∞

y∈Rm

[f(x, yi)− α]+pi(y)d(y) ≤ θ, i = 1..L

)

.

(11)

In equation (11), we have L time periods that show different characteristics
for return distributions, and define the probability distribution of returns for
each period as pi(.) i = 1..L. The return vectors, which have m dimensions,
are represented as yi. The maximum loss value of different L periods is shown
as θ. In the equation, when we apply the u term transformation on the special
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function as shown in equation (12), and create an integral with finite sum, the
equation (11) can be written as equation (13).

ui
k = [f(x, yik)− α]+ (12)

min
x∈X

(WCV aRβ(x)) = min
(x,α,θ)∈XxRxR



θ : α+
1

1− β

Si

∑

k=1

ui
kπ

i
k ≤ θ, i = 1..L



 .

(13)

In the equation, Si equals to the number of observations in period i, πi
k refers

to probability of kth return value in period i. In the model, it is assumed that
πi
k = 1/Si. The optimization parameters can be listed as follows.

Inputs:

y, β, µ, π (14)

Target:

min (θ) (15)

Limitations:

x ∈ X (16)

α+
1

1− β

(

πi
)T

ui
≤ θ i = 1..L (17)

ui
k ≥ f(x, yik)− α i = 1..L, k = 1..S (18)

ui
k ≥ 0 (19)

xT ¯(yi) ≥ µ (20)

Outputs:

α, u, θ, x. (21)

The first limitation provides the condition that asset weights are feasible,
i.e. their sum is 1 and each weight is equal or higher than zero. The second
limitation derives from the worst–case conditional value-at-risk definition. The
third and fourth limitations result from the fact that the u value equals to the
defined specific function. The latest limitation guarantees a target return equal
or higher than a minimum limit for each different period.

In practice, inputs, limitation and outputs defined in equations from (4)
to (10) for nominal CVaR model, and inputs, targets, limitation and outputs
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defined in equations from (14) to (21) for the robust CVaR model are optimized
by using linear programming. In the test stage, assets weights produced with
both optimization models are used to compare the expected returns. Three
different but complementary test approaches are employed. The first approach
is called in-sample test and it shows returns generated with both models by
using the data for optimization. The second performance test is based on out-
of- sample test. We measure and compare returns generated with both models
in out-of-sample data. Finally, we implement a Monte-Carlo simulation process
which produces random returns in case of periods in the future. These periods
are produced in line with the same characteristics observed in each sub-period in
the historical data. For each simulated period, optimized weights are used to the
compare return performance of the models. As it is shown in empirical results,
performance of robust model is better in the simulated new period even though
there is a period which is similar to the crisis period within all the sub-periods.

3. Data and preliminary analysis

We construct a hypothetical portfolio based on daily historical values of stock
market indices from the US, the UK, Japan, Germany and France. As the aim of
the paper is to test the performance of the robust optimization models in the re-
cent global crisis, we select the stock market indices of the advanced economies,
where the observed impacts of the crisis have been more severe. The perfor-
mance of alternative portfolios can be examined by RobustRisk software appli-
cation. The total data set includes 10 907 daily observations of closing values
of the selected indices from 02/01/1990 to 31/05/2013. Data from 02/01/1990
to 27/05/2008 with 4 801 observations is selected as in sample data for train-
ing purposes. The rest of the data from 02/06/2008 to 31/05/2013 with 1 305
observations representing the crisis period are reserved for purposes of the out
of sample test.

Table 1. Stock indices used for portfolio construction
Country Index Name Symbol

The US Dow Jones Industrial Index-500 DJI
The US Standard and Poors 100 Index S&P
The UK Financial Times Stock-Exchange-100 FTSE
Japan Nikkei Stock Exchange NKY

Germany Deutsche Borse AG Index-50 DAX
France Paris Stock Exchange-30 CAC

For the worst-case CVaR estimation, the in–sample data are divided into
4 different sub-periods. In other words, the number of S is 4. However, the
numbers of observations in each period are different. The rationale behind
the determination of sub-periods is based on the main observed trends in the
markets, i.e., bull and bear market trends are clustered under different time
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periods. In addition, the mean and variance of each sub-period also encourage
us to divide the full time periods into 4 sub-periods. As the data and RobustRisk
software application are publicly available, the readers can produce the empirical
evidence with different sub-periods determined by their own judgments. As it
is suggested in the conclusion section, the robust risk models can be improved
by allowing the model to assign proper sub-periods with certain data clustering
methods rather than arbitrary sub-period determination.

Table 2. The number of sub-periods (S) and the numbers of observations in
each period (Si)

Period ID (S) Time period Sample size (Si)

Period 1 02/01/1990 - 29/12/1995 1564
Period 2 01/01/1996 - 31/12/1999 1045
Period 3 03/01/2000 - 31/12/2002 782
Period 4 01/01/2003 - 27/05/2008 1410

Out of sample period 02/06/2008 - 31/05/2013 1305

The returns of the indices in each period are presented in the Fig. 1. The
graphs indicatively show that the volatilities of the markets are especially higher
in the third segment, representing the non-stable period between 2000 and 2002.

In Table 3, the mean and variance values of returns in the stock market
index in each sub-period are presented.

Table 3. Means and standard deviations of the indices

Period ID DJI S&P DAX CAC NKY FTSE

Period 1 0.00042 0.00038 0.00021 0.00002 -0.00032 0.00030

M
ea
n Period 2 0.00063 0.00065 0.00090 0.00097 -0.00018 0.00046

Period 3 -0.00039 -0.00067 -0.00130 -0.00110 -0.00077 -0.00076

Period 4 0.00033 0.00037 0.00071 0.00041 0.00044 0.00035

Period 1 0.00006 0.00005 0.00012 0.00013 0.00023 0.00007

V
a
ri
a
n
ce

Period 2 0.00012 0.00013 0.00020 0.00017 0.00020 0.00011

Period 3 0.00021 0.00022 0.00047 0.00037 0.00029 0.00024

Period 4 0.00007 0.00008 0.00015 0.00013 0.00015 0.00009

The preliminary analysis of the time series data indicates that there is a
risk-return imbalance with return distribution in period 3. Negative return
with probability distribution observed in period 3 and higher variance (with
positive return) are material in the time series data. It is highly probable that
the robust CVaR model will assign period 3 as the worst-case and optimize the
portfolio with the distributional characteristics of that period.
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Figure 1. Daily returns on the stock indices for the in-sample data period. Each
vertical line indicates period boundaries
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4. Empirical findings and their implications in practice

We run the models with in–sample period data under alternative target expected
returns (µ). However, the worst-case CVaR optimization does not guarantee any
positive return with in–sample period data due to severe bear market conditions
observed in period 3. As it can be remembered from the methodology section,
when the distribution of returns is known, values can be assigned in a parametric
model. In the nominal CVaR model, alternatively, equal probability assumption

Table 4. Asset weight of optimization result with β = 0.99 and µ = 0
Method DJI S&P DAX CAC NKY FTSE

WCVaR 0 0 0 0 0 0

CVaR 0.287 0.1365 0 0 0.3096 0.2669

can be pre-defined, πk = 1/S. However, in the worst-case CVaR model, risk
estimation is based on the worst distribution of returns within the universe of
all the possible distributions in sub-periods. As the distributions of assets do
not remain same in time, the returns might fit into different distributions in the
worst-cases in order to provide a return guarantee for the whole period.

Table 5. Return and Risk value of optimization result with β = 0.99 and µ = 0
Period 1 Period 2 Period 3 Period 4

Return
WCVaR 0 0 0 0

CVaR 0.00016 0.00034 -0.00064 0.00037

Risk
WCVaR 0.0406 0.0483 0.1853 0.00019

CVaR 0.0228 0.0279 0.0347 0.0228

In our case, the worst-case CVaR model could not produce any results.
In other words, the model does not guarantee any positive minimum estimated
return for the portfolio as the model does not work with any positive (π) values.
Using lower significance level, such as 0.95, does not change the result.

Table 6. Asset weight of optimization result with β = 0.99 and µ = −0.0005
Method DJI S&P DAX CAC NKY FTSE

WCVaR 0.6988 0 0 0 0.0303 0.271

CVaR 0.287 0.1365 0 0 0.3096 0.2669

Given those findings, our motivation was to determine a minimum loss level
with robust CVaR model for the worst case. When the model is run with µ =
−0.0005, the worst-case CVaR produces estimated returns as shown in Tables
6-7 and Fig. 2. As presented in Table 7, with the distributional characteristics
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Table 7. Return and Risk value of optimization result with β = 0.99 and
µ = −0.0005

Period 1 Period 2 Period 3 Period 4

Return
WCVaR 0.00037 0.00056 -0.0005 0.00034

CVaR 0.00016 0.00034 -0.00064 0.00037

Risk
WCVaR 0.0231 0.034 0.0403 0.0243

CVaR 0.0228 0.0279 0.0347 0.0228

of period 3, the robust model guarantees that the loss is restricted with 0.0005;
and also outperforms the nominal CVaR.

In order to analyze the model performances, we have run Monte-Carlo simu-
lations with 5 million iterations. The Sharp ratios indicate that the performance
of robust model outperforms the nominal model when the return distribution
structures of period 1, 2 and 3 are used as the representative for the whole in-
sample period. Only with the distribution in period 4 which represents a bull
market, the nominal model outperforms the robust model, but the magnitude
of success is not material. As Table 7 shows, robust model provides a comfort
of 0.0005 losses with period 3 return distribution characteristics and produces
lower loss as represented through the Sharp ratio.

Table 8. Monte-Carlo simulation results (5 million iterations)
Period Method Return Variance Sharp Ratio

1
Nominal 0.00016 0.00005 0.02187

Robust 0.00037 0.00004 0.0577

2
Nominal 0.00033 0.00007 0.04031

Robust 0.00056 0.00009 0.06058

3
Nominal -0.00064 0.00012 -0.05788

Robust -0.00050 0.00016 -0.03970

4
Nominal 0.00038 0.00005 0.05337

Robust 0.00034 0.00005 0.04588

After determining the optimized weights of the assets in the portfolio under
the minimized loss level, the performances of the optimized portfolios resulting
from the worst-case CVaR and nominal CVaR models can be compared for the
out of sample data from 02/06/2008-31/05/2013 representing the recent global
financial crisis. In this way, we compare the performances of the models in
the recent crisis period which is chosen as out of sample period with optimized
assets weights trained between 1990 and 2008. The worst-case model returns
are immunized against a loss of 0.005.

Both Figs. 3 and 4 clearly point out the fact that the performance of robust
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Figure 2. Visual presentation of the optimized portfolio values during the in-
sample period
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Figure 3. Out of sample performances of the models

model is better than that of the nominal model; however, as the markets start
to recover after 2012, the nominal CVaR performance catches the one of the
robust model.

In this paper, we contribute to the finance literature by providing a perfor-
mance comparison of robust optimization procedures in the crisis period. The
evidence points out the fact that robust optimization immunes the portfolio
against loss in the crisis period with a pre-determined guaranteed level. In our
case, the robust portfolio optimization outperforms the nominal CVaR opti-
mization for the data corresponding to the recent global crisis period. In that
sense, the empirical findings in this paper do not support the argument that
the contribution of robust optimization in portfolio performance is limited as
compared to stochastic models (Bertsimas et al., 2011: 465). It is empirically
shown that using robust optimization provides more favorable returns in the
crisis periods.

The empirical results in this paper clearly suggest considering robust opti-
mization procedures especially in crisis periods in order to immune the portfolios
against a higher level of loss than pre-determined or tolerated levels. On the
other hand, as the out of sample test results after 2012 indicate, the robust
model provides a capacity to construct a budget of uncertainty. It provides
the portfolio managers alternatives in the trade-off between robustness and per-
formance, and in choosing the corresponding level of probabilistic guarantee.
However, trade-off between risk and return should be considered under alterna-
tive risk tolerance and market conditions determined by portfolio managers or
institutions.
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Figure 4. Distribution of optimized portfolio returns in comparison during out
of sample period

5. Conclusion

In this paper, we compared the worst-case CVaR and the nominal CVaR opti-
mization procedures for the data of the recent crisis period. Robust optimiza-
tion procedures have gained popularity due to recent improvements of software
coding in the last decade. However, the preliminary research was based on
theoretical and methodological strengths of robust optimization with limited
empirical evidence.

Recent empirical research provides results showing that the robust portfolio
optimization outperforms the conventional value-at-risk models (Zymler et al.
2011; Chen and Kwon, 2012). On the other hand, there exists also certain em-
pirical evidence supporting the argument that robust optimization procedures
do not provide any advantage as there is a cost of robustness in risk and return
trade-off in practice (Bertsimas et al., 2011: 465).

In this paper, we use RobustRisk software to compare the performances of
optimization models with worst-case CVaR and nominal CVaR in the recent
global crisis period. The out of sample and Monte-Carlo simulation results
point out the fact that robust optimization outperforms the CVaR optimization
in crisis periods on the advanced markets. The model performances resemble
each other when the crisis is over.

The practitioners or academicians can use the worst-case CVaR optimiza-
tion model and compare its performance with the nominal CVaR optimization
results with alternative portfolios and time-periods by using RobustRisk. As
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the performances of the models with return distribution characteristics in pe-
riod 4 indicate, by adopting a conservative approach in risk-return trade-off,
CVaR can sometimes produce inefficient portfolio optimization results. The
mixed quantitative results encourage us to reach a conclusion that both the
quantitative and qualitative procedures should be considered in risk manage-
ment. Expert judgments in estimation of market character, i.e., operating in a
bear or bull market are considered as crucial as estimation of robust optimized
risk parameters. Failure in estimating the market trend may produce inefficient
optimization decisions.

Future research may concentrate on methodological improvements of robust
optimization procedures in data modeling for determination of sub-periods. In-
stead of arbitrary sub-periods determined by the users’ own judgments, data
clustering methodologies that divide the whole sample periods into homogeneous
sub-periods by examining the distributional characteristics of the observations,
can be embedded in the robust optimization procedures.

A. How to use RobustRisk?

This additional note has been prepared to explain how to use RobustRisk. Users
should follow the steps described below to run robust portfolio optimization and
produce robust parameters with RobustRisk.

Stage 1: Loading RobustRisk on the desktop.

RobustRisk software application is publicly available and can be freely loaded on
users desktops. The computers should have Matlab Compiler Runtime Installer
v7.9.

Stage 2: Preparing MS Excelr data file and data loading.

The MS Excelr data file should include the time series of returns for each finan-
cial instruments in the portfolio under examination. Each column in the spread-
sheets should have time series for a financial instrument. There are no quan-
titative limitations on the financial instrument in the portfolio apart from MS
Excelr limitations. RobustRisk allows the users to appoint different time peri-
ods to reach the worst-case period in the data set. If the users prefer to divide
the data into sub-periods with their own judgment, data for each period should
be prepared on different spreadsheets in the same MS Excelr file. In order to
load the in sample and out of sample MS Excelr files from the external sources,
File function is selected and the MS Excelr data file can be loaded into ”Ro-
bustRisk” by ”Import InSampleDataExcel” or ”Import outSampleDataExcel”
options.

When data is loaded, RobustRisk automatically asks the users to assign the
number of periods in the data, and calculates the sample size, numbers of assets
and periods, mean and variance for the financial instruments in each period
separately and prints them on the interface screen.

Stage 3: Selecting the confidence level (β) and minimum guaranteed return
(µ).
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Figure 5. The MS Excelr load function

The interface of RobustRisk has two separate boxes where the users can en-
ter their choices on the confidence level for the optimization process (β) and
minimum required return on the optimization (µ). The (µ) value is used by
the worst-case CVaR and is not a parameter for CVaR estimation. The de-
fault values for the parameters are 0.99 and 10−3, but can be changed by the
users according to their choices for the risk tolerance and confidence level. The
(µ) value can be determined as negative to set up a stop loss as the maximum
tolerated return in the worst-case CVaR.

Stage 4: Estimating robust portfolio outputs.

The ”calculate” button on the interface produces basic descriptive statistics for
each weights, expected returns and risk for the optimized portfolio asset in dif-
ferent sub-periods. The historical optimized portfolio values are also printed on
the screen. In the worst-case CVAR model, RobustRisk performs optimization
with data in each period, and produce optimized parameters with the worst-case
period characteristics for the whole period of analysis.

The users can reach the optimum (minimum) guaranteed expected return
by using different µ values. However, after a break-even threshold level for
µ, the optimization does not produce any robust solution, which means that
the required minimum return is not guaranteed. In this case, the worst-case
CVaR does not produce any value for return as the system cannot guarantee
any minimum return.

Stage 5: Simulation and out of sample performances of the robust opti-
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Figure 6. Performances of the models with Monte-Carlo simulation

mization models.

In order to test the accuracy of the performances of the models, RobustRisk
has two alternative out-of-sample procedures. As a first procedure, users can
perform Monte-Carlo simulation by selecting any period as a representative for
the worst-case and compare the model performances with mean, variance and
Sharp ratio. The number of simulations can be determined by the users, and
RobustRisk calculates the performance indices and show them on the interface.

As a second procedure, the users can perform out-of-sample tests with re-
served test data to measure the performances of the models. The out of sample
data can be loaded into the system by using the same File function. Robus-
tRisk calculates mean, variance and Sharp ratios for each model, and also print
a visual comparison for the models on a window.
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