PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An arbitrary waveform synthesis structure with high sampling rate and low spurious

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The arbitrary waveform generator is characterised by its flexible signal generation, high frequency resolution and rapid frequency switching speed and is wildly used in fields like communication, radar systems, quantum control, astronautics and biomedicine. With continuous development of technology, higher requirements are placed on to the arbitrary waveform generator. Sampling rate determines the bandwidth of the output signal, spurious-free dynamic range determines the quality of generated signal. Due to above, these two indicators’ improvement is vital. However, the existing waveform generation methods cannot generate signals with quality good enough due to their technical limitations, and in order to realize a high system sampling rate, to accomplish waveform generation process in FPGA, multipath parallel structure is needed. Therefore, we proposed a parallel waveform synthesis structure based on digital resampling, which fixed the problems existing in the current methods effectively and achieved a high sampling rate as well as high quality arbitrary waveform synthesis. We also built up an experimental test bench to validate the proposed structure.
Rocznik
Strony
159--173
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
autor
  • University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
Bibliografia
  • [1] Veyrac, Y., Rivet, F., Deval, Y., Dallet, D., Garrec, P., & Montigny, R. (2016). A 65-nm CMOS DAC Based on a Differentiating Arbitrary Waveform Generator Architecture for 5G Handset Transmitter. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(1), 104-108. https://doi.org/10.1109/TCSII.2015.250-19-17
  • [2] Lukin, K. A., Zemlyaniy, O. V., Tatyanko, D. N., Lukin, S., & Pascazio, V. (2017). Noise radar design based on FPGA technology: On-board digital waveform generation and real-time correlation processing. 2017 18th International Radar Symposium (IRS), 1-7. https://doi.org/10.23919/IRS.2017.8008223
  • [3] Bowler, R., Warring, U., Britton, J. W., Sawyer, B. C., & Amini, J. (2013). Arbitrary waveform generator for quantum information processing with trapped ions. Review of Scientific Instruments, 84(3), 033108. https://doi.org/10.1063/1.4795552
  • [4] Ostrovskyy, P., Schrape, O., Tittelbach-Helmrich, K., Herzel, F., Fischer, G., Hellmann, D., Börner, P., Loose, A., Hartogh, P., & Kissinger, D. (2018). A Radiation Hardened 16 GS/s Arbitrary Waveform Generator IC for a Submillimeter Wave Chirp-Transform Spectrometer. 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), 1-4. https://doi.org/10.1109/NORCHIP.2018.8573493
  • [5] Sarnago, H., Burdio, J., Sanchez, I., Mir, L., Gariburo, I., & Lucia, O. (2020). GaN-Based versatile waveform generator for biomedical applications of electroporation. IEEE Access, 8, 97196-97203. https://doi.org/10.1109/ACCESS.2020.2996426
  • [6] May, M. (2013). Phase coherent signal creation with up to twelve channels with high-performance multi-channel Arbitrary Waveform Generator. 2013 IEEE AUTOTESTCON, 1-4. https://doi.org/10.1109/AUTEST.2013.6645045
  • [7] Jungerman, R., Taber, J., Corredoura, P., Poulton, K., Jewett, B., Liu, J., & Srikantam, V. (2004). Bandwidth and bits: New AWG design achieves both. Proceedings AUTOTESTCON 2004, 448-452. https://doi.org/10.1109/AUTEST.2004.1436928
  • [8] Xiao, Y., Chen, Y., Liu, K., Huang, L., & Yang, X. (2019). A Sampling Rate Selecting Algorithm for the Arbitrary Waveform Generator. IEEE Access, 7, 83761-83770. https://doi.org/10.1109/ACCESS.2019.2922989
  • [9] Yang, X., Wang, H., Liu, K., Xiao, Y., Fu, Z., & Guo, G. (2018). Minimax design of digital FIR filters using linear programming in bandwidth interleaving digital-to-analog converter. IEICE Electronics Express, 15. https://doi.org/10.1587/elex.15.20180565
  • [10] Liu, K., Zhao, W., Xiao, Y., Fu, Z., Huang, L., & Yin, L. (2019). A Multi-resolution Digital Waveform-synthesis Structure Based Multi-DAC for Arbitrary Waveform Generator. 2019 IEEE AUTOTESTCON, 1-5. https://doi.org/10.1109/AUTOTESTCON43700.2019.8961900
  • [11] Park, Y., & Remley, K. A. (2014). Two-stage correction for wideband wireless signal generators with time-interleaved digital-to-analog-converters. 83rd ARFTG Microwave Measurement Conference. 1-4. https://doi.org/10.1109/ARFTG.2014.6S99517
  • [12] Krall, C., Vogel, C., & Witrisal, K. (2007). Time-Interleaved Digital-to-Analog Converters for UWB Signal Generation. 2007 IEEE International Conference on Ultra-Wideband, 366-371. https://doi.org/10.1109/ICUWB.2007.4380971
  • [13] Yang, X., Wang, H., & Liu, K. (2018). Estimation and compensation methods of time delay and phase offset in hybrid filter bank DACs. Electronics Letters, 54. https://doi.org/10.1049/el.2018.0937
  • [14] Chen, X., Chandrasekhar, S., Randel, S., Raybon, G., Adamiecki, A., Pupalaikis, P., & Winzer, P. (2016). All-electronic 100-GHz bandwidth digital-to-analog converter generating PAM signals up to 190-GBaud. 2016 Optical Fiber Communications Conference and Exhibition (OFC), 1-3. https://doi.org/10.1109/JLT.2016.2614126
  • [15] Schmidt, C., Kottke, C., Jungnickel, V., & Freund, R. (2016). Enhancing the Bandwidth of DACs by Analog Bandwidth Interleaving. Broadband Coverage in Germany; 10. ITG-Symposium, 1-8.
  • [16] Siehma, M., Bieder, S., & Czylwik, A. (2016). A 40 GHz arbitrary waveform generator by frequency multiplexing. ICOF 2016; 19th International Conference on OFDM and Frequency Domain Techniques, 1-7.
  • [17] Schmidt. C., Tanzil, V. H., Kottke, C., Freund, R., & Jungnickel, V. (2016). Digital signal splitting among multiple DACs for analog bandwidth interleaving (ABI). 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), 245-248. https://doi.org/10.1109/ICECS.2016.7841178
  • [18] Liu, J., Li, X., Wei, Q., & Yang, H. (2015). A 14-bit 1.0-GS/s dynamic element matching DAC with >80 dB SFDR up to the Nyquist. 1026-1029. https://doi.org/10.1109/ISCAS.2015.7168811
  • [19] Cordesses, L. (2004). Direct digital synthesis: A tool for periodic wave generation (part 1). IEEE Signal Processing Magazine, 21(4), 50-54. https://doi.org/10.1109/MSP.2004.1311140
  • [20] Cordesses, L. (2004). Direct digital synthesis: A tool for periodic wave generation (part 2). IEEE Signal Processing Magazine, 21(5), 110-112. https://doi.org/10.1109/MSP.2004.1328096
  • [21] Zhang, J., Zhang, R., & Dai, V. ( 2017). Design and FPGA implementation of DDS based on waveform compression and Taylor series. 2017 29th Chinese Control and Decision Conference (CCDC), 1301-1306. https://doi.org/10.1109/CCDC.2017.7978718
  • [22] Balasubramanian, S., Creech, G., Wilson, J., Yoder, S. M., McCue, J. J., Verhelst, M., & Khalil, W. (2011). Systematic Analysis of Interleaved Digital-to-Analog Converters. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(11), 882-886. https://doi.org/10.1109/TCSII.2011.2172526
  • [23] Deng, T.-B. (2011). Minimax Design of Low-Complexity Even-Order Variable FractionaI-Delay Filters Using Second-Order Cone Programming. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(9), 692-696. https://doi.org/10.1109/TCSII.2011.2164160
  • [24] Li, H., Guo, J., Wang, Z., & Wang, H. (2017). An efficient parallel resampling structure based on iterated short convolution algorithm. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4. https://doi.org/10.1109/ISCAS.2017.8050373
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52ab7f52-3aeb-4d5d-bfa5-7e6a06f568ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.