PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the embossment phenomenon of disc grinding by workpiece's removal rate

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The disc grinding has become a widely used technology in the precision-manufacturing process for plate stainless steel. However, embossment phenomenon occurs on the ground workpiece's surface. Moreover, the workpiece's removal rate can be applied to measure the embossment. In most studies, the researches on the disc grinding technology mainly focus on the trajectory distributions, which might be not appropriate enough to capture the workpiece's removal rate. To this end, this paper has presented a multiple grits-discretized (MGD) model on the workpiece's removal rate to identify the formation mechanism of the embossment phenomenon. Meanwhile, the current model is established based on the grits' distributions, the grits' size and the kinematic multiple grits' trajectory. The theoretical prediction for the distribution of workpiece's removal rate shows a reasonable agreement with the experimental validation. It shows that the removal rate is non-uniformly distributed on the workpiece's surface, which results in the workpiece's embossment. Furthermore, the workpiece's removal rate is greatly affected by the speed ratio. Therefore, the proposed model is not only anticipated to be meaningful for improving the uniformity of the machined workpiece by adjusting the speed ratio, but also expected to be useful for enhancing the understanding on the disc grinding enterprises.
Rocznik
Strony
739--755
Opis fizyczny
Bibliogr. 25 poz., fot., rys., wykr.
Twórcy
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
autor
  • Northeastern University, Shenyang, China
Bibliografia
  • [1] H.N. Li, T.B. Yu, L. Da Zhu, W.S. Wang, Analytical modeling of ground surface topography in monocrystalline silicon grinding considering the ductile-regime effect, Arch. Civil Mech. Eng. 17 (2017) 880–893.
  • [2] C. Sun, J. Duan, D. Lan, Z. Liu, S. Xiu, Prediction about ground hardening layers distribution on grinding chatter by contact stiffness, Arch. Civil Mech. Eng. 18 (2018) 1626–1642.
  • [3] Z.C. Li, Z.J. Pei, G.R. Fisher, Simultaneous double side grinding of silicon wafers: a literature review, Int. J. Mach. Tools Manuf. 46 (2006) 1449–1458.
  • [4] T. Kosmaä, The effect of dental grinding and sandblasting on the biaxial flexural strength and Weibull modulus of tetragonal zirconia, Key Eng. Mater. 254–256 (2004) 683–686.
  • [5] R.P. Lindsay, The effect of contact time on forces, wheelwear rate and G-ratio during internal and external grinding, CIRP Ann. - Manuf. Technol. 33 (1984) 193–197.
  • [6] Z.J. Pei, G.R. Fisher, J. Liu, Grinding of silicon wafers: a review from historical perspectives, Int. J. Mach. Tools Manuf. 48 (2008) 1297–1307.
  • [7] J.R. Tuenge, B. Hollomon, H.E. Dillon, L.J. Snowdenswan, Life- cycle assessment of energy and environmental impacts of LED lighting products. Part 3: LED environmental testing, Office of Scientific & Technical Information Technical Reports, vol. 35, 2013, pp. 523–527.
  • [8] H. Hocheng, H.Y. Tsai, M.S. Tsai, Effects of kinematic variables on nonuniformity in chemical mechanical planarization, Int. J. Mach. Tools Manuf. 40 (2000) 1651–1669.
  • [9] L. Wang, Z. Hu, C. Fang, Y. Yu, X. Xu, Study on the double- sided grinding of sapphire substrates with the trajectory method, Precision Eng. 51 (2017).
  • [10] H. Kim, H. Jeong, Effect of process conditions on uniformity of velocity and wear distance of pad and wafer during chemical mechanical planarization, J. Electron. Mater. 33 (2004) 53–60.
  • [11] J. Yuan, W. Yao, P. Zhao, B. Lyu, Z. Chen, M. Zhong, Kinematics and trajectory of both-sides cylindrical lapping process in planetary motion type, Int. J. Mach. Tools Manuf. 92 (2015) 60–71.
  • [12] G.J. Pietsch, M. Kerstan, Understanding simultaneous double- disk grinding: operation principle and material removal kinematics in silicon wafer planarization, Precision Eng. 29 (2005) 189–196.
  • [13] Z.C. Li, E.A. Baisie, X.H. Zhang, Diamond disc pad conditioning in chemical mechanical planarization (CMP): A surface element method to predict pad surface shape, Precision Eng. 36 (2012) 356–363.
  • [14] C.C.A. Chen, L.S. Hsu, A process model of wafer thinning by diamond grinding, J. Mater. Process. Technol. 201 (2008) 606– 611.
  • [15] O. Chang, H. Kim, K. Park, B. Park, H. Seo, H. Jeong, Mathematical modeling of CMP conditioning process, Microelectron. Eng. 84 (2007) 577–583.
  • [16] D. Castillo-Mejia, S. Beaudoin, A locally relevant prestonian model for wafer polishing, J. Electrochem. Soc. 150 (2003) G96–G102.
  • [17] Y. Zhao, L. Chang, S.H. Kim, A mathematical model for chemical–mechanical polishing based on formation and removal of weakly bonded molecular species, Wear 254 (2003) 332–339.
  • [18] K. Fardad, B. Najafi, S.F. Ardabili, A. Mosavi, S. Shamshirband, T. Rabczuk, Biodegradation of medicinal plants waste in an anaerobic digestion reactor for biogas production, Comput. Mater. Continua 55 (2018) 381–392.
  • [19] J.P.P.M. Smelt, A.P. Bos, R. Kort, S. Brul, Modelling the effect of sub(lethal) heat treatment of Bacillus subtilis spores on germination rate and outgrowth to exponentially growing vegetative cells, Int. J. Food Microbiol. 128 (2008) 34–40.
  • [20] P. Koshy, A. Iwasald, M.A. Elbestawl, Surface generation with engineered diamond grinding wheels: insights from simulation, CIRP Annals - Manuf. Technol. 52 (2003) 271–274.
  • [21] T.A. Nguyen, D.L. Butler, Simulation of precision grinding process, part 1: generation of the grinding wheel surface, Int. J. Mach. Tools Manuf. 45 (2005) 1321–1328.
  • [22] C. Sun, Y. Niu, Z. Liu, Y. Wang, S. Xiu, Study on the surface topography considering grinding chatter based on dynamics and reliability, Int. J. Adv. Manuf. Technol. (2017) 1–14.
  • [23] Y. Liu, A. Warkentin, R. Bauer, Y. Gong, Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations, Precision Eng. 37 (2013) 758–764.
  • [24] S. Malkin, Grinding Technology: Theory and Applications of Machining with Abrasives, SME, 1989.
  • [25] Y. Cao, J. Guan, B. Li, X. Chen, J. Yang, C. Gan, Modeling and simulation of grinding surface topography considering wheel vibration, Int. J. Adv. Manuf. Technol. 66 (2013) 937–945.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52a4c2a8-d6cd-412f-8c1f-a438a794e409
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.