PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The multidisciplinary integration of knowledge, approaches and tools: toward the sensory human experience centres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The technological progress of the last decades has significantly contributed to the development and innovation of several areas, such as engineering, architecture, and medicine, providing new possibilities to measure, control, simulate and assess most of the physical phenomena of the environment, and the corresponding reactions of the individuals. This has shifted the attention of researchers toward the need to understand, in depth, the mechanisms which influence the perception and well-being of humans in complex environments (e.g., cities, urban parks). In this light, it can be expected that the first-person experiences will be assumed as the new frontier of future decision-making and design processes, as they may involve representatives of local communities and groups of interest. This approach leads to a multidisciplinary integration and contamination of the scientific competencies for all research groups involved in the so-called holistic research. Overcoming the concept of noise that has dominated until the end of the last century and considering the environmental sounds as a 'resource' rather than a 'waste', with the introduction of the Soundscape approach, psychologists and sociologists have provided several tools (e.g., questionnaires, scales, tasks) to measure the perceptual, emotional, and cognitive reactions of the individuals when they are exposed to the sounds. Different multidisciplinary research groups are involved in studies that adopt, refine, or propose new investigation tools, to assess, modify and manage the sound of cities, and their effects on the satisfaction and well-being of the population. Moreover, the huge development of miniaturised and powerful hardware and software of the last decade allowed the reconstruction of audio-visual scenarios with a very high degree of realism and the possibility of interacting ecologically with the virtual environment in a fully functional immersive experience. The recent possibility to measure the physiological and neurological reactions of the individuals has opened a further road to extend the knowledge about the effects of noise and the weight of the other physical factors on the populations. A scheme of Sensory Human Experience Centres, where approaches, tools, competencies of various disciplines are integrated, is presented. These kinds of centres could represent, in future, the places where they concentrate the selection and validations of design alternatives (e.g., product, building, city and infrastructure scale) at the local and national levels.
Rocznik
Strony
art. no. 2022108
Opis fizyczny
Bibliogr. 108 poz., 1 il. kolor., fot., rys.
Twórcy
  • Università degli Studi della Campania “Luigi Vanvitelli”, Department of Architecture and Industrial Design, via San Lorenzo - 81031 Aversa (CE), Italy
autor
  • Università degli Studi della Campania “Luigi Vanvitelli”, Department of Architecture and Industrial Design, via San Lorenzo - 81031 Aversa (CE), Italy
Bibliografia
  • 1. R. Charlotte, L. Skär; Smart Glasses for Caring Situations in Complex Care Environments: Scoping Review; JMIR mHealth and uHealth, 2020, 8(4), e16055.
  • 2. G. Lawson, D. Salanitri, B. Waterfield; VR Processes in the Automotive Industry; In: Human-Computer Interaction: Users and Contexts, HCI 2015. Lecture Notes in Computer Science; M. Kurosu, Eds.; Springer: 2015, 9171, 208-217.
  • 3. H.M. Krumholz; Big Data and New Knowledge In Medicine: The Thinking, Training, And Tools Needed For A Learning Health System; Health Affairs, 2014, 33(7), 1163-1170.
  • 4. Y. Cui, S. Kara, K.C. Chan; Manufacturing big data ecosystem: A systematic literature review, Robotics and Computer-Integrated Manufacturing, 2020, 62, 101861.
  • 5. United Nations Conference on Trade and Development UNCTAD; Technology and Innovation Report 2021, Catching technological waves; Geneva: United Nations, 2021.
  • 6. M.A.M. Ferreira, J.A. Filipe, M. Coelho, J. Chavaglia; Nanotechnology applications in industry and medicine; Acta Scientiae et Intellectus, 2017, 3(2), 31-50.
  • 7. S.S. Jadhav, S.V. Jadhav; Application of Nanotechnology in Modern Computers; Proceedings of the International Conference on Circuits and Systems in Digital Enterprise Technology, 2018, 1-6.
  • 8. M. Sharon, A.S. Lopez Rodriguez, C. Sharon, P. Sifuentes Gallardo; Nanotechnology in the Defense Industry: Advances, Innovation, and Practical Applications; Scrivener Publishing LLC, USA, 2019;
  • 9. R. Saini, S. Saini, S. Sharma; Nanotechnology: the future medicine; Journal of cutaneous and aesthetic surgery, 2010, 3(1), 32-33.
  • 10. S. Contera, J.B. de la Serna, T.D. Tetley; Biotechnology, nanotechnology and medicine; Emerg. Top Life Sci. 2020, 4(6), 551-554.
  • 11. Nanotechnology for Food, Agriculture, and Environment; In: Nanotechnology in the Life Sciences; D. Thangadurai, J. Sangeetha and R. Prasad, Eds.; Springer Nature: Switzerland, 2020.
  • 12. W.H. Azmi, M.Z. Sharif, T.M. Yusof, Rizalman Mamat, A.A.M. Redhwan; Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system - A review; Renewable and Sustainable Energy Reviews, 2017, 69, 415-428.
  • 13. K. Berggren, Q. Xia, K.K. Likharev, D.B. Strukov, H. Jiang, T. Mikolajick, et al.; Roadmap on emerging hardware and technology for machine learning; Nanotechnology, 2021, 32(1), 1-45.
  • 14. J. Ahopelto, G. Ardila, L. Baldi, F. Balestra, D. Belot, G. Fagas, S. De Gendt, D. Demarchi, M. Fernandez-Bolaños, D. Holden, A.M. Ionescu, G. Meneghesso, A. Mocuta, M. Pfeffer, R.M. Popp, E. Sangiorgi, C.M. Sotomayor Torres; NanoElectronics roadmap for Europe: From nanodevices and innovative materials to system integration; Solid-State Electronics, 2019, 155, 7-19.
  • 15. H. Mehdi, H. Milon, C.H. Kawsar; Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review; Journal of Materials Chemistry A, 2021, 9(6), 3231-3269.
  • 16. F. Salamone, M. Masullo, S. Sibilio; Wearable Devices for Environmental Monitoring in the Built Environment: A Systematic Review; Sensors, 2021, 21(14), 4727.
  • 17. P. Mishra, U. Shrawankar; Comparison between Famous Game Engines and Eminent Games; International Journal of Interactive Multimedia and Artificial Intelligence, 2016, 4(1), 69-77.
  • 18. L. Maffei, M. Masullo, A. Pascale, G. Ruggiero, V. Puyana Romero; Immersive Virtual Reality in community planning: Acoustic and visual congruence of simulated vs real world; Sustainable Cities and Society, 2016, 27, 338-345.
  • 19. P. Kourtesis, S. Collina, L. Doumas, S. MacPherson; Validation of the Virtual Reality Everyday Assessment Lab (VR-EAL): An Immersive Virtual Reality Neuropsychological Battery with Enhanced Ecological Validity; Journal of the International Neuropsychological Society, 2021, 27(2), 181-196.
  • 20. T. Iachini, L. Maffei, M. Masullo, V.P. Senese, M. Rapuano, A. Pascale, F. Sorrentino, G. Ruggiero; The experience of virtual Reality: are individual differences in mental imagery associated with sense of presence?; Cognitive Process. 2019, 20(3), 291-298.
  • 21. M.E. Portman, A. Natapov, D. Fisher-Gewirtzman; To go where no man has gone before: Virtual reality in architecture, landscape architecture and environmental planning; Computers, Environment and Urban Systems, 2015, 54, 376-384.
  • 22. L. Jiang, M. Masullo, L. Maffei, F. Meng, M. Vorländer; How do shared-street design and traffic restriction improve urban soundscape and human experience? - An online survey with virtual reality; Building and Environment, 2018, 143, 318-328.
  • 23. L. Jiang, M. Masullo, L. Maffei, F. Meng, M. Vorländer; A demonstrator tool of web-based virtual reality for participatory evaluation of urban sound environment; Landscape and Urban Planning, 2018, 170, 276-282.
  • 24. G.M. Echevarria Sanchez, T. Van Renterghem, K. Sun, B. De Coensel, D. Botteldooren; Using Virtual Reality for assessing the role of noise in the audio-visual design of an urban public space; Landscape and Urban Planning, 2017, 167, 98-107.
  • 25. B. Salah, M.H. Abidi, S.H. Mian, M. Krid, H. Alkhalefah, A. Abdo; Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0; Sustainability, 2019, 11(5), 1477.
  • 26. M. Poyade, C. Eaglesham, J. Trench, M. Reid; A Transferable Psychological Evaluation of Virtual Reality Applied to Safety Training in Chemical Manufacturing; ACS Chem. Health Safety, 2021, 28(1), 55-65.
  • 27. L. Li, F. Yu, D. Shi, J. Shi, Z. Tian, J. Yang, X. Wang, Q. Jiang; Application of virtual reality technology in clinical medicine; American journal of translational research, 2017, 9(9), 3867-3880.
  • 28. S. Bin, S. Masood, Y. Jung; Virtual and augmented reality in medicine; In: Biomedical Engineering, Biomedical Information Technology (Second Edition), Chapter Twenty; D. Feng, Eds.; Academic Press: 2020, 673-686.
  • 29. A. Kristoffersson, M. Lindén; A Systematic Review on the Use of Wearable Body Sensors for Health Monitoring: A Qualitative Synthesis; Sensors, 2020, 20(5), 1502.
  • 30. L. Lu, J. Zhang, Y. Xie, F. Gao, S. Xu, X. Wu, Z. Ye, Wearable Health Devices in Health Care: Narrative Systematic Review; JMIR mHealth uHealth, 2020, 8, e18907.
  • 31. J.M. Peake, G. Kerr, J.P. Sullivan; A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations; Front. Physiol. 2018, 9, 743.
  • 32. E. Stefana, F. Marciano, D. Rossi, P. Cocca, G. Tomasoni; Wearable Devices for Ergonomics: A Systematic Literature Review; Sensors, 2021, 21(3), 777.
  • 33. H. Li, H. Xie, G. Woodward; Soundscape components, perceptions, and EEG reactions in typical mountainous urban parks; Urban Forestry & Urban Greening, 2021, 64, 127269.
  • 34. P. Toreini, M. Langner, A. Maedche; Using Eye-Tracking for Visual Attention Feedback; In: Information Systems and Neuroscience, Lecture Notes in Information Systems and Organization; ,F.D. Davis, R. Riedl, J. Vom Brocke, P.M. Léger, A. Randolph, T. Fis, Eds.; Springer: 2020, 261-270.
  • 35. M. Tang, C. Auffrey; Advanced Digital Tools for Updating Overcrowded Rail Stations: Using Eye Tracking, Virtual Reality, and Crowd Simulation to Support Design Decision-making; Urban Rail Transit, 2018, 4(4), 249-256.
  • 36. M. Masullo, A. Pascale, R.A. Toma, G. Ruggiero, L. Maffei; Virtual Reality Overhead Crane Simulator; Procedia Computer Science, 2022, 200, 205-215.
  • 37. J. Kaiser, A.D. Nimbarte, D. Davari, B. Gopalakrishnan, X. He; Study of skin conductance and perceived discomfort of the hand/finger system under controlled atmospheric conditions; Theoretical Issues in Ergonomics Science, 2016, 18(5), 442-454.
  • 38. A.P. Zanesco, E. Denkova, A.P. Jha; Associations between self-reported spontaneous thought and temporal sequences of EEG microstates; Brain Cogn. 2021, 150, 105696.
  • 39. W. Yan, G. Ruolei, Y. Qiwei, L. Yue-jia; How Do Amusement, Anger and Fear Influence Heart Rate and Heart Rate Variability?; Frontiers in Neuroscience, 2019, 13, 1131.
  • 40. K.R.B. Singh, V. Nayak, J. Singh, R.P. Singh; Nano-enabled wearable sensors for the Internet of Things (IoT); Materials Letters, 2021, 304, 130614.
  • 41. M. Cruz Alvarado, P. Bazán; Concept of intelligent nanosensors used in smart cities; In: Micro and Nano Technologies, Nanosensors for Smart Cities, Chapter 27; B. Han, V.K. Tomer, T.A. Nguyen, A. Farmani, P.K. Singh, Eds.; Elsevier: 2020, 451-465.
  • 42. J. Neeli, S. Patil; Insight to security paradigm, research trend & statistics in internet of things (IoT); Global Transitions Proceedings, 2021, 2, 84-90.
  • 43. B.K. Mohanta, B. Jena, U. Satapathy, S. Patnaik; Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology; Internet of Things, 2020, 11, 100227.
  • 44. C. Zhang, Y. Lu; Study on artificial intelligence: The state of the art and future prospects; Journal of Industrial Information Integration, 2021, 23, 100224.
  • 45. R.J. de Dear, T. Akimoto, E.A. Arens, G. Brager, C. Candido, K.W. Cheong, B. Li, N. Nishihara, S.C. Sekhar, S. Tanabe, J. Toftum, H. Zhang, Y. Zhu; Progress in thermal comfort research over the last twenty years; Indoor Air, 2013, 23(6), 442-461.
  • 46. R. de Dear; Revisiting an old hypothesis of human thermal perception: Alliesthesia; Building Research & Information, 2011, 39(2), 108-117.
  • 47. M. Cabanac; Physiological role of pleasure; Science, 1971, 173(4002), 1103-1107.
  • 48. T. Parkinson, R. de Dear; Thermal pleasure in built environments: physiology of alliesthesia; Build. Res. Inf. 2015, 43(3), 288-301.
  • 49. B. Truax; Models and strategies for acoustic design; “Stockholm, Hey Listen!” Conference, June 8-16, The Royal Swedish Academy of Music, 1998.
  • 50. A.L. Brown; Soundscapes and environmental noise management; Noise Control Engineering Journal, 2010, 58, 493-500.
  • 51. R. M. Schafer; The Tuning of the World; Alfred A. Knopf: New York, 1977.
  • 52. R. M. Schafer; The Soundscape: Our Sonic Environment and the Tuning of the World; Rochester: Destiny Books. (First published 1977), 1994, 245.
  • 53. B. Schulte-Fortkamp, A. Fiebig; Soundscape analysis in a residential area: an evaluation of noise and people's mind; Acta Acustica united with Acustica, 2006, 92(6), 875-880.
  • 54. G. Brambilla, L. Maffei; Perspective of the soundscape approach as a tool for urban space design; Noise Control Eng. J. 2010, 58(5), 532-539.
  • 55. Soundscape and the Built Environment; J. Kang, B. Schulte-Fortkamp, Eds.; CRC Press Taylor & Francis: Boca Raton, FL, 2015.
  • 56. A. Fiebig, V. Acloque, S. Basturk, M. Di Gabriele, M. Horvat, M. Masullo, R. Pieren, K.S. Voigt, M. Yang, K. Genuit, B. Schulte-Fortkamp; Education in Soundscape, A seminar with young scientists in the COST Short Term Scientific Mission, Soundscape: Measurement, Analysis, Evaluation; 20th International Congress on Acoustics ICA, Sydney (Australia), 23-27 August 2010.
  • 57. International Organization for Standardization. ISO 12913-1:2014 Acoustics-Soundscape Part 1: Definition and Conceptual Framework; ISO: Geneva, Switzerland, 2014.
  • 58. International Organization for Standardization. ISO/TS 12913-2:2018 Acoustics-Soundscape Part 2: Data Collection and Reporting Requirements; ISO: Geneva, Switzerland, 2018.
  • 59. International Organization for Standardization. ISO/TS 12913-3:2019 Acoustics-Soundscape Part 3: Data Analysis; ISO: Geneva, Switzerland, 2019.
  • 60. K. Herranz-Pascual, I. García, I. Aspuru, I. Díez, A. Santander; A. Progress in the understanding of soundscape: Objective variables and objectifiable criteria that predict acoustic comfort in urban places; Noise Mapping, 2016, 3, 247-263.
  • 61. D. Steele, V. Fraisse, E. Bild, C. Guastavino; Bringing music to the park: The effect of Musikiosk on the quality of public experience; Applied Acoustics, 2021, 177(107910), 1-13.
  • 62. T. Van Renterghem, K. Vanhecke, K. Filipan, K. Sun, T. De Pessemier, B. De Coensel, W. Joseph, D. Botteldooren; Interactive soundscape augmentation by natural sounds in a noise polluted urban park; Landscape and Urban Planning, 2020, 194(103705), 1-13.
  • 63. J.Y. Jeon, P.J. Lee, J. You, J. Kang; Acoustical characteristics of water sounds for soundscape enhancement in urban open spaces; The Journal of the Acoustical Society of America; 2012, 131(3), 2101-2109.
  • 64. B. Schulte-Fortkamp; The daily rhythm of the soundscape “Nauener Platz” in Berlin; Journal of the Acoustical Society of America, 2010, 127, 1774.
  • 65. F. Yi, J. Kang; Effect of background and foreground music on satisfaction, behavior, and emotional responses in public spaces of shopping malls; Applied Acoustics, 2019, 145, 408-419.
  • 66. W.M. To, A. Chung, B. Schulte-Fortkamp; Next generation soundscape design using virtual reality technologies; Proceedings of Meetings on Acoustics, 2016, 29(1), 040003.
  • 67. M. Masullo, L. Maffei, A. Pascale, V.P. Senese, S. De Stefano, C.K. Chau; Effects of Evocative Audio-Visual Installations on the Restorativeness in Urban Parks; Sustainability, 2021, 13(8328).
  • 68. K.W. Houser; Human Centric Lighting and Semantic Drift; LEUKOS, 2018, 14(4), 213-214.
  • 69. CIE; Position statement on non-visual effects of light - recommending proper light at the proper time, 2nd edition; Commission internationale de l'éclairage, CIE Central Bureau, Vienna, Austria, October 3, 2019; Available: http://www.cie.co.at/publications/international-standards.
  • 70. K. Houser, P. Boyce, J. Zeitzer, M. Herf; Human-centric lighting: Myth, magic or metaphor?; Lighting Research & Technology, 2021, 53(2), 97-118.
  • 71. M.T. Do, K.W. Yau; Intrinsically photosensitive retinal ganglion cells; Physiol. Rev. 2010, 90(4), 1547-1581.
  • 72. M. Parsaee, C.M.H. Demers, J.F. Lalonde, A. Potvin, M. Inanici, M. Hébert; Human-centric lighting performance of shading panels in architecture: A benchmarking study with lab scale physical models under real skies; Solar Energy, 2020, 204, 354-368.
  • 73. H. Xiao, H. Cai, X. Li; Non-visual effects of indoor light environment on humans: A review; Physiology & Behavior, 2021, 228(113195), 1-13.
  • 74. K. Chamilothori, G. Chinazzo, J. Rodrigues, E.S. Dan-Glauser, J. Wienold, M. Andersen; Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality; Building and Environment, 2019, 150, 144-155.
  • 75. M. Scorpio, R. Laffi, M. Masullo, G. Ciampi, A. Rosato, L. Maffei, S. Sibilio; Virtual reality for smart urban lighting design: review, applications and opportunities; Energies, 2020, 13(3809).
  • 76. N.J. Mansfield, S. Maeda; Subjective ratings of whole-body vibration for single- and multi-axis motion; The Journal of the Acoustical Society of America, 2011, 130,(3723).
  • 77. M. Scholz, L. Moheit, S. Marburg; A Review of Hand-Arm Vibration Simulation Approaches; Euronoise 2018, Heraklion, Crete-Greece, 2659-2662, 2018.
  • 78. Whittle, N., Peris, E., Condie, J., Woodcock, J., Brown, P., Moorhouse, A.T., Waddington, D.C., Steele, A. D. Wang, Y. Guo, S. Liu, Y. Zhang, W. Xu, J. Xiao; Haptic display for virtual Reality: progress and challenges; Virtual Reality & Intelligent Hardwar, 2019, 1(2), 136-162.
  • 79. K. Kaeppler, F. Mueller; Odor Classification: A Review of Factors Influencing Perception-Based Odor Arrangements; Chemical Senses, 2013, 38(3), 189-209.
  • 80. D. Huang, H. Guo; Relationships between odor properties and determination of odor concentration limits in odor impact criteria for poultry and dairy barns; Science of the Total Environment, 2018, 630, 1484-1491.
  • 81. H. Distel, S. Ayabe-Kanamura, M. Martínez-Gómez, I. Schicker, T. Kobayakawa, S. Saito, R. Hudson; Perception of everyday odors - Correlation between intensity, familiarity and strength of hedonic judgement; Chemical Senses, 1999, 24(2), 191-199.
  • 82. J. Li, K. Zou, W. Li, G. Wang, W. Yang; Olfactory Characterization of Typical Odorous Pollutants Part I: Relationship Between the Hedonic Tone and Odor Concentration; Atmosphere, 2019, 10(9), 524.
  • 83. C. Spence, M. Obrist, C. Velasco, N. Ranasinghe; Digitising the chemical senses: Possibilities & pitfalls; International Journal of Human-Computer Studies, 2017, 107, 62-74.
  • 84. H.I. Jo, J.Y. Jeon; Overall environmental assessment in urban parks: Modelling audio-visual interaction with a structural equation model based on soundscape and landscape indices; Building and Environment, 2021, 204, 108166.
  • 85. W.K. Chung, C.K. Chau, M. Masullo, A. Pascale; Modelling perceived oppressiveness and noise annoyance responses to window views of densely packed residential high-rise environments; Building and Environment, 2019, 157, 127-138.
  • 86. F. Liu, J. Kang; Relationship between street scale and subjective assessment of audio-visual environment comfort based on 3D virtual reality and dual-channel acoustic tests; Building and Environment, 2018, 129, 35-45.
  • 87. S.Y. Chan, C.K. Chau, T.M. Leung; On the study of thermal comfort and perceptions of environmental features in urban parks: A structural equation modeling approach; Building and Environment, 2017, 122, 171-183.
  • 88. W. Yang, H.J. Moon; Effects of recorded water sounds on intrusive traffic noise perception under three indoor temperatures; Applied Acoustics, 2019, 145, 234-244.
  • 89. J.Y. Hong, J.Y. Jeon; The effects of audio-visual factors on perceptions of environmental noise barrier performance; Landscape and Urban Planning, 2014, 125, 28-37.
  • 90. A. Preis, J. Kociński, H. Hafke-Dys, M. Wrzosek; Audio-visual interactions in environment assessment; Sci. Total Environ. 2015, 523, 191-200.
  • 91. R.J. Pheasant, M. Fisher, G. Watts, D. Whitaker, K. Horoshenkov; The importance of auditory-visual interaction in the construction of 'tranquil space'; J. Environ. Psychology, 2010, 30(4), 501-509.
  • 92. D. Vergara, M.P. Rubio, M. Lorenzo; On the Design of Virtual Reality Learning Environments in Engineering; Multimodal Technologies and Interaction, 2017, 1(2), 11.
  • 93. J. Llorca-Bofí, M. Vorländer; Multi-Detailed 3D Architectural Framework for Sound Perception Research in Virtual Reality; Frontiers in Built Environment, 2021, 7, 1-14.
  • 94. G. Chursin, M Semenov; Learning game development with Unity3D engine and Arduino microcontroller; Journal of Physics: Conference Series, 2020, 488, 012023.
  • 95. M. Masullo, H.B. Firat, L. Maffei; Virtual acoustic with game engines; 25th International Congress on Sound and Vibration ICSV, July 8-12, 2018, Hiroshima (Japan).
  • 96. M. Vorländer, R. Thaden; Auralization of airborne sound insulation in buildings; Acta Acustica united with Acustica, 2000, 86(1), 70-76.
  • 97. M. Vorländer; Auralization. Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality, 2nd ed.; Springer Nature: Switzerland, 2020.
  • 98. M. Imran, M. Vorländer, S.J. Schlittmeier; Audio-video virtual reality environments in building acoustics: An exemplary study reproducing performance results and subjective ratings of a laboratory listening experiment; The Journal of the Acoustical Society of America, 2019, 146(3), EL310-EL316.
  • 99. M. Imran, A. Heimes, M. Vorländer; Interactive real-time auralization of airborne sound insulation in buildings; Acta Acustica, 2021, 5(19).
  • 100. D. Poirier-Quinot, B. Katz, M. Noisternig; EVERTims: Open source framework for real-time auralization in architectural acoustics and virtual reality; 20th International Conference on Digital Audio Effects (DAFx-17), Sep 2017, Edinburgh, United Kingdom.
  • 101. S.C.S. Wyke, K. Svidt, F. Christensen, J. Bendix Sørensen, J. Storm Emborg, R.L. Jensen; Real-time Evaluation of Room Acoustics using IFC-based Virtual Reality and Auralization Engines; Documentation Report, Department of Civil Engineering, Aalborg University. DCE Technical reports no. 286, 2019.
  • 102. M. Vorländer; Simulation and Auralization of Outdoor Sound Propagation; Auralization. RWTH edition. Springer: Cham. 2020.
  • 103. R. Pieren, T. Bütler, K. Heutschi; Auralization of accelerating passenger cars using spectral modeling synthesis; Applied Science, 2016, 5(6), 1-27.
  • 104. F. Georgiou, M. Hornikx, A. Kohlrausch; Auralization of a car pass-by inside an urban canyon using measured impulse responses; Applied Acoustics, 2021, 183, 108291.
  • 105. R. Pieren, K. Heutschi, J.M. Wunderli, M. Snellen, D.G. Simons; Auralization of railway noise: Emission synthesis of rolling and impact noise; Applied Acoustics, 2017, 127, 34-45.
  • 106. J. Maillard, A. Kacem, N. Martin, B. Faure; Physically-based auralization of railway rolling noise; ICA 2019, 23rd International Congress on Acoustics, Sep 2019, Aachen, Germany, 2019.
  • 107. J. Llorca-Bofí, C. Dreier; J. Heck, M. Vorländer; Urban Sound Auralization and Visualization Framework-Case Study at IHTApark; Sustainability. 2022, 14(4), 2026.
  • 108. M. Scorpio, R. Laffi, A. Teimoorzadeh, G. Ciampi, M. Masullo, S. Sibilio; A calibration methodology for light sources aimed at using immersive virtual reality game engine as a tool for lighting design in buildings; Journal of Building Engineering, 2022, 103998.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52a26db3-f480-43ff-9bc4-b334de612b08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.