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Abstract The technological progress of the last decades has significantly contributed to the development 
and innovation of several areas, such as engineering, architecture, and medicine, providing new possibilities 
to measure, control, simulate and assess most of the physical phenomena of the environment, and the 
corresponding reactions of the individuals. This has shifted the attention of researchers toward the need to 
understand, in depth, the mechanisms which influence the perception and well-being of humans in complex 
environments (e.g., cities, urban parks). In this light, it can be expected that the first-person experiences will 
be assumed as the new frontier of future decision-making and design processes, as they may involve 
representatives of local communities and groups of interest. This approach leads to a multidisciplinary 
integration and contamination of the scientific competencies for all research groups involved in the so-
called holistic research. Overcoming the concept of noise that has dominated until the end of the last century 
and considering the environmental sounds as a 'resource' rather than a 'waste', with the introduction of the 
Soundscape approach, psychologists and sociologists have provided several tools (e.g., questionnaires, 
scales, tasks) to measure the perceptual, emotional, and cognitive reactions of the individuals when they 
are exposed to the sounds. Different multidisciplinary research groups are involved in studies that adopt, 
refine, or propose new investigation tools, to assess, modify and manage the sound of cities, and their effects 
on the satisfaction and well-being of the population. Moreover, the huge development of miniaturised and 
powerful hardware and software of the last decade allowed the reconstruction of audio-visual scenarios 
with a very high degree of realism and the possibility of interacting ecologically with the virtual 
environment in a fully functional immersive experience. The recent possibility to measure the physiological 
and neurological reactions of the individuals has opened a further road to extend the knowledge about the 
effects of noise and the weight of the other physical factors on the populations. A scheme of Sensory Human 
Experience Centres, where approaches, tools, competencies of various disciplines are integrated, is 
presented. These kinds of centres could represent, in future, the places where they concentrate the selection 
and validations of design alternatives (e.g., product, building, city and infrastructure scale) at the local and 
national levels. 
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1. Introduction   

The technological progress of the last two decades has contributed to transforming the way to face many 
issues related to medicine and engineering, making available new tools and devices [1-4] to measure, 
analyse, model, and simulate existing or future situations. From 1996-2018 only the nanotechnology sector 
has counted about 152 000 publications and 4 000 patents [5].  

Despite some ethical, legal, and social implications [6] of the use of this technology, especially for the 
environmental, health, and safety’s monitoring [5, 7], nanotechnology applications it is impacting an 
incredibly wide range of industries and markets, such as defense [8], medicine [9, 10], agriculture [11], 
energy saving [12].  They are also promoting the development of powerful, and energy-efficient computers 
to process a large amount of data and simulate complex situations [13], and smaller and lighter devices 
[14, 15]. Virtual Reality (VR) and wearable devices [16] are the products that the growth of this technology 
has mostly spread. More in detail, since the first commercial prototype of Head Mounted Display (HMD) of 
2013, and thanks to the rapid development of game engine platforms [17] that allow simulating the virtual 
environments and interactions, Virtual Reality has grown dramatically. The key aspect of this tool is its high 
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ecological validity [18-20]. Today VR has applications in several sectors, such as architecture and design 
[21-24] (figure 1 - left), engineering and manufacturing [25], safety [26] and in clinical medicine [27, 28].  

On the other side, wearable devices gained attention, as well, not only due to the integration of body 
sensors that provide health monitoring [29,30], but also because of the great interest toward the 
biofeedback signals [31, 32], i.e. electroencephalogram (EEG), electrodermal activity (EDA), heart rate 
variability (HRV) Visual Attention Feedback (VAF), and to their association with environmental parameters 
[33-37] (figure 1 - right) and self-reported measures of people well-being [38, 39]. 

 

 

Figure 1. Virtual reality environment built during the FP7-PEOPLE-2011-ITN EU project SONORUS The 
Urban Sound Planner (left) [22, 23]. Images of a virtual reality industrial simulator, lab experiment with 

biofeedback monitoring (right) [36]. 

Besides, the development of wireless communications has favoured the installation and the use of many 
fully connected sensors, able to communicate with each other and with the external surroundings, in what 
is known as the Internet of Things (IoT) [40]. Their applications in controlling transportation and energy 
infrastructures, buildings and other home devices allow the environmental and urban monitoring, people 
healthcare, energy cost management, building/home automation [41].  While the rapid developments in IoT 
have increased the number of connected devices leading toward Smart City, Home and Transportation 
concepts, its growth is still negatively affected by cybersecurity risks and privacy concerns [42, 43]. The 
development of IoT applications has exponentially increased the amount and dimensionality of the 
available data. The increasing demand for intelligent virtual assistants to increase client satisfaction levels 
has contributed to the development of new multidisciplinary technology, artificial intelligence (AI). Today, 
AI is adopted in several sectors and integrates cognition, machine learning, emotion recognition, human-
computer interaction, data storage, and decision-making [44]. 

2. Paradigms’ changes in physical disciplines 

In the same decades, has been discussed the limitations of the existing approaches and models, mainly 
focused on the adverse effects of the environment on individuals, e.g., thermal discomfort, noise annoyance, 
disability and discomfort glare; and on the use of tables of data or coloured maps to describe existing or 
future situations. Beyond these classic models, some researchers proposed using new paradigms which 
investigate the hedonic attributes of the human perception and positive influence (distraction, restoration, 
being away, fascination) of some environmental cues in everyday life. 

In thermal comfort studies, the major paradigm shift was from the physically-based determinism of 
Fanger's comfort model toward the mainstream and acceptance of the adaptive comfort model, which 
considers physiological, behavioural, and psychological. Another relevant shift concerns the language used 
to study the air movement, which passed from overwhelmingly negative (draft, nuisance) to positive 
hedonic aspects, such as aerodynamic pleasure, breeze, air aesthetics, and thermal delight [45]. The hedonic 
component of thermal perception is believed to play a role in initiating and/or activating behavioural 
thermoregulation. Furthermore, in 2010, de Dear [46] revisited the concept of Alliesthesia (Greek: 
allios=changed, esthesia=sensation) proposed in 1971 by Cabanac de Lafregeyre [47] to describe the 
amount of thermal pleasure or displeasure aroused in non-steady-state environments acting on those 
factors that can modify the internal state. In 2015 [48], he found that positive pleasure can be associated 
with temporal thermal transients and prospect a new road of design and engineering. 

In environmental acoustic research, since the end of the last century, some researchers distinguished 
between the traditional environmental noise management approach, which involved an objective energy-
based model of the acoustic environment, from a new subjective listener-centred model where the sounds 
were conceived not only as a waste but as a resource [49, 50] for the community, able to engender 
pleasantness and improve the quality of life of inhabitants. This paradigm shift originates since, in the 70s, 
Schafer coined the term soundscape [51, 52], prospecting a new way to consider the sound. This new 
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approach, the Soundscape approach, integrates the knowledge and skills of the many disciplines and is 
mainly based on the opinions and experiences of the space users [53-56]. Definitions and framework of the 
soundscape [57], the data collection methods and the reporting requirements [58], and the data analysis 
[59] have been described in the standards series ISO 12913. The framework of the soundscape shows in 
brief that context plays a major role in people’s perceptual construction of soundscapes. A deeper 
description of the elements of the context that may potentially influence a person’s experience of the 
acoustic environment was provided by Herranz-Pascual et al. [60]. The multidisciplinary approach has 
broadly stimulated the scientific community in using sounds as an element of design for outdoor, i.e., urban 
parks [61-63], plazas, [64], and indoor [65] contexts, as well as the presentation of the research project on 
this topic. More recently, researchers are using new technologies to design and predict the effect of 
soundscape in realistic virtual contexts [66, 67, 22-24]. 

In lighting design, a change of paradigm refers mainly to the pre and post LED use, where the debate 
about the potential benefits of light sources with higher ratios of scotopic to photopic lumens (S/P ratio) 
and CCT, pre-LED [68], was overpassed by the interest toward the integrative lighting [69], also known as 
“human-centric lighting” (HCL), “circadian lighting”, and “biodynamic lighting”. This last wider approach 
aims at adapting buildings’ lighting to individuals’ physical and mental health-related to the image forming 
(IF) and non-image-forming (NIF) responses to light [70]. Where IF response refers to biological processes 
between the rods and cones and the brain after light reaches the retina, and NIF response refers to the 
intrinsically photosensitive retinal ganglion cells (ipRGCs), the human eye photoreceptors revealed in 
recent biological studies [71]. While IF effects have widely been studied in lighting science, actual 
knowledge about NIF response to light found that human eyes’ ipRGCs are responsible for circadian clocks 
regulation, alertness, performance, and mood [72]. Considering the aims of the integrative lighting [73], the 
increasing interest toward a lighting design going beyond the physical visual experience, and the 
advancement of the tools and devices for vision, which have made the virtual visual experience very 
realistic, several researchers focused their research on perceptual experiments in immersive virtual 
environments [74, 75]. 

Body vibration aboard transportation means [76] and hand-harm vibrations [77] experiences can be 
already well simulated using 3 or 6 degrees of freedom multi-axis shakers once the stimulus has been 
simulated or recorded in existing situations. On the contrary, haptic experiences (manipulation, motion, 
objects, grasping, touching) are still limited to real experiments. In fact, although recent technologies helped 
to shift the paradigm of haptics interaction through desktop haptics, surface haptics and wearable haptics, 
this interaction still fails in several aspects. More powerful haptic devices and cross-disciplinary endeavours 
should be done to fill the gap and achieve equivalent sensations and interactions between the virtual and 
physical world [78]. 

Like most previous research disciplines, to control the smell experience, it is important to monitor the 
objective parameters that characterise a specific odorant volume or environment (i.e. concentration, 
intensity and persistence) [79, 80]. The previous objective parameters can be correlated with further 
perception-based ratings describing the character and the quality (e.g. character, hedonic tone and 
annoyance) of the olfactive experience [81, 82]. The paradigm shift in this field is strongly connected to 
reproducing and controlling the odorants during the experience [83]. 

3. Multisensory experiential assessment in urban planning. 

The convergence of different scientific disciplines in overpassing the old deterministic paradigms toward 
more human-centred approaches and the new tools and devices that allow building ecological realistic 
(virtual or hybrid) immersive experiences, and monitoring human reactions, represent the central elements 
rethinking the process of assessment. For instance, urban planning could allow the communities interested 
in new projects to play a key role in the decision-making process. Adopting an experiential assessment could 
overpass most of the issues highlighted previously. First, inhabitants’ social and economic context could be 
considered by involving representatives of local communities and the group of interest. Secondly, the issues 
and preferences connected to the multisensory perception and interaction of the auditory, visual, thermal 
and lighting sphere, which emerged more or less evidently in several studies [84-91], will be lived through 
holistic, physical or digital experiences, without filters and misunderstandings. In analogy with the 
Soundscape Framework ISO 12913-1 [57], figure 2 depicts the framework of the holistic experience. 
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Figure 2. Holistic experiential framework. 

 
The benefits of this kind of process are clear, especially for big and complex projects, and consist mainly 

in avoided costs for the administrations and investors, and in the increases and best engagement of local 
authority teams, communities and users in the design processes, making understandable complex 
architectural and engineering interventions and alternatives. 

Besides the previous advantages, this kind of approach will also shorten the distances among the various 
disciplines involved, fostering the mutual scientific and technical contamination among 
physicians/engineers, designers and planners, sociologists, psychologists and economists during all the 
phases of the design process. 

4. Toward Sensory Human Experience Centres 

Figure 3 shows a framework of new centres, here named Sensory Human Experience Centres, where it is 
expected that it will be possible to simulate future design scenarios to get feedback from human holistic 
experiences. The figure shows the data flow, the procedural phases and the possible complexity levels of 
the virtual-hybrid experience, and the skills involved in the assessment and decisional process. 

The framework should be seen as an extension of the most traditional design process, as seen from the 
left column. This means that future project teams should be able to project not only according to the existing 
national/international regulations and standards but also demonstrate the project’s sustainability taking 
into account the human feedback: reactions, expectation, acceptance, and suggestions of the local 
communities and users. The input used for the modelling and simulation of buildings, landscape, traffic, 
climate, noise and lighting will be used, as well, to create the VR or hybrid experiential scenes. 

In analogy with the research of Vergara et al. [92] on the design of VR learning environment, one of the 
first issues to perform an experiential assessment is the need to define which projects will encompass this 
new process. The definition of the number of interested inhabitants or users (e.g., small, medium, big) and 
intrinsic typology of the projects could suggest situations where the weight of the human component cannot 
be neglected. Once the project’s group is identified, the main objectives of the experiential assessment 
should be defined, i.e., “which is the level of acceptance and impact on the population?”, “which is the best 
alternative among those proposed?” what are the effects on human well-being?”. 

The next step is to define the level of realism of the experience. Must be defined: 1) the senses and stimuli 
to be included in the experiment; 2) the levels of detail of the different cues; 3) the interaction level (e.g. , 
participant seated, driven or free exploration) between participants and scene. Llorca-Bofí and Vorländer, 
in [93], presented a comprehensive framework on audio and visual cues and discussed two extreme 
applications that combine different modules in a final 3D scenario for perception research. 

More complex is the control and calibration of the odours parameters. As it affects significatively the 
vision, in the Sensory Human Experience Centres framework, the lighting has been kept separate from the 
Vision and put at a wider level of detail. In fact, depending on the level of detail used to simulate the light 
emission (e.g., omnidirectional light, directional light, IES profiles), the scene vision (surfaces, objects, 
materials, shadows) may change dramatically. However, while the equipment (binaural dummy head) and 
the audio calibration procedure are clear and independent of the playback system (headphones or spatial 
audio), those for lighting calibration are still not well defined. On the other hand, considering the integration 
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of physical cues, the calibration and control are well defined for the microclimate (temperature, relative 
humidity, air velocity, mean radiant temperature) and, once defined, the simulators’ characteristics for the 
HAV and WBV vibrations. 
The activation of some of these physical stimuli can be “steady” or activated by VR events programmed in 
the scene using Arduino interfaces [94].  
 

 

Figure 3. Sensory Human Experience Centres framework. 

Among the most diffused platforms in implementing VR scenarios, Unreal Engine and Unity are the most 
used. Although these game engines have their own visual and audio engines, which are continuously 
updated to improve their realism, they still lack to reproduce some important physical effects [95]. On the 
other hand, they allow installing physical-based rendering plugins, or develop specific ones by 
programming in C sharp (Unity) and Blueprint (Unreal Engine). Vorländer and the colleagues of the 
Institute of Technical Acoustics (ITA) of RWTH Aachen University, after introducing the auralization 
technique [96] in building acoustics [97], have designed and integrated into Unity an auralization 
framework that implements a sound insulation model based on the ISO 12354-1 [97-99]. Other authors 
have proposed further implementations in room acoustics with other platforms [100, 101]. However, while 
lighting engines in Unity and Unreal Engine allow using IES profiles’ files, which provide all the emissive 
characteristics of the light sources, all the audio engines and plugins use wave files as input of audio 
processing. This means that besides implementing a physically based rendering for audio, also in outdoor 
contexts, it will be indispensable to have available audio databases to introduce background or foreground 
sounds and simulate the sound emission of the transportation and anthropic sounds. While IoT and artificial 
intelligence can help the manual, or automatic, implementation of the sound databases of the environmental 
and anthropic sounds for the simulation of the emission of transportation means. Some authors have 
already developed models for synthesis or auralization [102] for road traffic [103,104], railway [105, 106], 
aircraft [107, 108] noise. Figure 4 shows the block diagrams of two noise auralization models for passenger 
cars [103] and aircraft [107] noise.  

Implementing all these auditory cues is necessary to get a dynamic and plausible auralization of the 
sound environment. 
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Figure 4. Auralization block diagrams of passenger cars (upper) [103] and aircraft [107] (lower) noise. 

 
Creating the virtual or hybrid experience of the future scenarios is only the technical part of the setup 

and organization of Sensory Human Experience Centres. In fact, engineers and architects will be involved 
in the preparation of the project and the graphic and physical simulation of all relevant variables of the 
context (i.e. sound, vision, lighting, microclimate, air quality). Sociologists will lead to the local communities' 
selection and involvement. Psychologists will select the material (questionnaires, other tests/scales) to 
administer to the communities’ representative, prepare the experimental design, and manage the 
experiments. Experts in the economy will estimate the costs for the alternatives. Data analyses and the 
process outcomes could be shared among most professionals included or specialists in statistics. 

5. Discussion and conclusions 

This paper has highlighted how several disciplines have changed their approach in assessing the effects of 
new projects and interventions in the last two decades. Most of the disciplines involved in studying the 
physical transformation of the environment and the effect on the individuals are shifting their approach 
from a negative (e.g., pollution, adverse effects) and monodisciplinary toward a positive (e.g. soundscape) 
and multidisciplinary (e.g. restoration, well-being) approach. The availability to use innovative 
technological tools and devices to simulate future scenarios and measure human feedback is now 
stimulating a renovation of the skills, making them broader, contaminating several other research fields.  

It is expected that in the next future, most of the projects which interest large or sensitive communities, 
maybe all, could be performed within new spaces dedicated to reproducing holistic and predictive 
experience, which we named Sensory Human Experience Centres. 

However, several issues must be solved before walking this road. One of the most important is the 
definition of the eligibility criteria of the digital platforms to use for the implementation of the virtual 
scenarios, which are the minimum requirements of the acoustics and lighting's engines or plugins. 
Independently from the platform selected, all of them must be able to simulate the most important physical 
effects of the (sound and lighting) propagation during the human interaction, also considering the 
combinations with other relevant stimuli. Similarly, the algorithms selected for the sound synthesis of the 
emission transportation sources should satisfy some criteria. In this sense, it is expected that instead of 
developing lots of algorithms, as done for the national noise emission models on the environmental 
acoustics, the efforts should be focused on few proposals.  

From the point of view of implementing realistic lighting simulations, several efforts must be made to 
develop proper calibration procedures [108]. This should be done at least for HMD. 
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All issues mentioned above have highlighted the need to standardize, as possible, the devices, modules, 
and procedures making VR ready for a new EXperiential Reality (ExR), where it will be possible to define 
the accuracy level of all experiences. 

As they involve several skills, ExR tools should also provide a database of the most common and 
validated tools used in psychology and sociology, and the most appropriate statistical analyses. Regarding 
the biofeedback measures, it is expected that in an early phase of the implementation it could be more a 
prerogative of the research sectors than of the assessment process. 

Lots of research must be done in this direction. This will allow a general change of paradigms in assessing 
how humans perceive changes in the surrounding environment and will foster the scientific contamination 
among the disciplines involved in the design of the experiential reality (ExR). 
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