PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibrator Data Denoising Based on Fractional Wavelet Transform

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel data denoising method is proposed for seismic exploration with a vibrator which produces a chirp-like signal. The method is based on fractional wavelet transform (FRWT), which is similar to the fractional Fourier transform (FRFT). It can represent signals in the fractional domain, and has the advantages of multi-resolution analysis as the wavelet transform (WT). The fractional wavelet transform can process the reflective chirp signal as pulse seismic signal and decompose it into multi-resolution domain to denoise. Compared with other methods, FRWT can offer wavelet transform for signal analysis in the timefractional- frequency plane which is suitable for processing vibratory seismic data. It can not only achieve better denoising performance, but also improve the quality and continuity of the reflection syncphase axis.
Czasopismo
Rocznik
Strony
776--788
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, China
  • College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, China
autor
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, China
  • College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, China
autor
  • Pingxiang College, Pingxiang, China
Bibliografia
  • [1] Bagaini, C. (2010), Acquisition and processing of simultaneous vibroseis data, Geophys. Prospect. 58, 1, 81-100, DOI: 10.1111/j.1365-2478.2009.00842.x.
  • [2] Birgé, L., and P. Massart (1997), From model selection to adaptive estimation. In: D. Pollard, E. Torgersen, and G.L. Yang (eds.), Festschrift for Lucien Le Cam. Research Papers in Probability and Statistics, Springer, New York, 55-87, DOI: 10.1007/978-1-4612-1880-7_4.
  • [3] Huang, Y., and B. Suter (1998), The fractional wave packet transform, Multidim. Syst. Signal Process. 9, 4, 399-402, DOI: 10.1023/A:1008414608970.
  • [4] Jeffryes, B.P. (1996), Far-field harmonic measurement for seismic vibrators. In: 66th SEG Annual Meeting, 10-15 November 1996, Denver, USA, Expanded Abstracts, Society of Exploration Geophysicists, 60-63.
  • [5] Kraniauskas, P., G. Cariolaro, and T. Erseghe (1998), Method for defining a class of fractional operations, IEEE Trans. Signal Process. 46, 10, 2804-2807, DOI: 10.1109/78.720382.
  • [6] Mendlovic, D., Z. Zalevsky, D. Mas, J. García, and C. Ferreira (1997), Fractional wavelet transform, Appl. Optics 36, 20, 4801-4806, DOI: 10.1364/ AO.36.004801.
  • [7] Meunier, J., and T. Bianchi (2002), Harmonic noise reduction opens the way for array size reduction in vibroseis operations. In: 72nd SEG Annual Meeting, 6-11 October 2002, Salt Lake City, USA, Expanded Abstracts, Society of Exploration Geophysicists, 70-73, DOI: 10.1190/1.1817354.
  • [8] Miah, K.H., and M.D. Sacchi (2011), Fractional Fourier transform and its application in seismic signal processing. In: Proc. 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011, 1645-1649, DOI: 10.3997/2214-4609.20149189.
  • [9] Morlet, J., G. Arens, E. Fourgeau, and D. Giard (1982), Wave propagation and sampling theory - Part II: Sampling theory and complex waves, Geophysics 47, 2, 222-236, DOI: 10.1190/1.1441329.
  • [10] Ozaktas, H.M., O. Arikan, M.A. Kutay, and G. Bozdagt (1996), Digital computation of the fractional Fourier transform, IEEE Trans. Signal Process. 44, 9, 2141-2150, DOI: 10.1109/78.536672.
  • [11] Pei, S.C., and J.J. Ding (2000), Closed-form discrete fractional and affine Fourier transforms, IEEE Trans. Signal Process. 48, 5, 1338-1353, DOI: 10.1109/78.839981.
  • [12] Sallas, J.J., D. Corrigan, and K.P. Allen (1998), High fidelity vibratory source seismic method with source separation, United States Patent: 5721710A.
  • [13] Shi, J., N. Zhang, and X. Liu (2012), A novel fractional wavelet transform and its applications, Sci. China Inf. Sci. 55, 6, 1270-1279, DOI: 10.1007/s11432-011-4320-x.
  • [14] Steeghs, P. (1998), Wigner-Radon representations for 3-D seismic data analysis. In: Proc. IEEE-SP Int. Symp. on Time-Frequency and Time-Scale Analysis, 6-9 October 1998, Pittsburgh, USA, 433-436, DOI: 10.1109/TFSA.1998.721454.
  • [15] Unser, M., and T. Blu (2000), Fractional splines and wavelets, SIAM Rev. 42, 1, 43-67, DOI: 10.1137/S0036144598349435.
  • [16] Wood, J.C., and D.T. Barry (1994), Linear signal synthesis using the Radon-Wigner transform, IEEE Trans. Signal Process. 42, 8, 2105-2111, DOI: 10.1109/78.301845.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52a108f8-ee69-42a9-a93d-28eeb705d54f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.