PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flotation separation of enargite from complex copper concentrates by selective surface oxidation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In previous study, the promising results of separating enargite from non-arsenic copper sulfides were obtained using selective surface oxidation in pure mineral systems. However, this technology was not well understood in real ores or concentrates. In this study, the flotation separation of enargite from complex copper concentrates by selective surface oxidation was investigated. The effects of regrinding, pulp pH, NaClO concentration, conditioning time and flotation time on separation of enargite from NECu minerals were studied. The mineralogical characteristics of the flotation feed and products were showed as an instructive tool to understand the separation results. According to the results of EDTA extraction, the possible mechanism for separation of enargite from NECu minerals is that enargite is more resistant to oxidized compared to NECu minerals. The following order for the oxidation of NECu minerals and enargite is obtained: chalcopyrite (chalcocite, digenite)> enargite (covellite).
Rocznik
Strony
852--864
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
autor
  • School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Bibliografia
  • ABEIDU, A. M., ALMAHDY, A. M., 1980. Magnesia mixture as a regulator in the separation of pyrite from chalcopyrite and arsenopyrite. Int. J. Miner. Process. 6 (4), 285–302. https://doi.org/10.1016/0301-7516(80)90026-5
  • AGORHOM, E. A.,SKINNER, W.,ZANIN, M., 2013. Influence of gold mineralogy on its flotation recovery in a porphyry copper–gold ore. Chem Eng Sci. 99, 127-138. https://doi.org/10.1016/j.ces.2013.05.037
  • BARZEGAR, M. H., FALLAHIYEKTA, M., 2018. Increasing the Thermal Efficiency of Double Tube Heat Exchangers by Using Nano Hybrid. Emer. Sci. J. 2, 11-19. http://dx.doi.org/10.28991/esj-2018-01122
  • BIGDELI, T., DEHAGHI, S. M., 2018. Evaluating the Efficiency of a Trace Amount of Zr Dopant on Photocatalytic Activity of TiO2 in Decolorization of Azo Dye. Emer. Sci. J. 2, 175-164. http://dx.doi.org/10.28991/esj-2018-01139
  • BRUCKARD, W. J., DAVEY, K. J., JORGENSEN, F. R. A.,WRIGHT, S., BREW, D. R. M.,HAQUE, N.,VANC, E.R., 2010. Development and evaluation of an early removal process for the beneficiation of arsenic–bearing copper ores. Miner. Eng.23, 1167–1173. https://doi.org/10.1016/j.mineng.2010.03.015
  • BRUCKARD, W. J., KYRIAKIDIS, I., WOODCOCK, J. T., 2007. The flotation of metallic arsenic as a function of pH and pulp potential–A single mineral study. Int. J. Miner. Process. 84, 25–32. https://doi.org/10.1016/j.minpro.2007.05.001
  • FANDRICH, R., GU, Y., BURROWS, D., MOELLER, K., 2007. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 84, 310–320. https://doi.org/10.1016/j.minpro.2006.07.018
  • FORNASIERO, D., FULLSTON, D., LI, C., RALSTON, J., 2001. Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. Int. J. Miner. Process. 61, 109–119. https://doi.org/10.1016/S0301-7516(00)00029-6
  • FULLSTON, D., FORNASIERO, D., RALSTON, J., 1999. Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces A: Physicochem. Eng. Aspects. 146, 113–121. https://doi.org/10.1016/S0927-7757(98)00725-0
  • GRÄBNER, M., LESTER, E. 2016. Proximate and ultimate analysis correction or kaolinite-rich Chinesecoals using mineral liberation analysis. Fuel. 186, 190-198. http://dx.doi.org/10.1016/j.fuel.2016.08.074
  • GREET, C., SMART, R. S .C., 2002. Diagnostic leaching of galena and its oxidation products with EDTA. Min. Eng.15, 515–522. https://doi.org/10.1016/S0892-6875(02)00075-4
  • GUO, H., YEN, W. T., 2005. Selective flotation of enargite from chalcopyrite by electrochemical control. Miner. Eng.18, 605–612. https://doi.org/10.1016/j.mineng.2004.10.005
  • HAGA, K., TONGAMP, W., SHIBAYAMA, A., 2012. Investigation of Flotation Parameters for Copper Recovery from Enargite and Chalcopyrite Mixed Ore. Mater Trans. 53(4), 707–715. https://doi.org/10.2320/matertrans.M2011354
  • HIRAJIMA, T., MIKI, H., SUYANTARA, G. P. W., MATSUOKA, H., ELMAHDY, A. M., SASAKI, K., IMAIZUMI, Y., KUROIWA, S., 2017. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner. Eng.100, 83-92. https://doi.org/10.1016/j.mineng.2016.10.007.
  • HUCH, R.O., (TUCSON, AZ), 1994. Method for Achieving Enhanced Copper-containing Mineral Concentrate Grade by Oxidation and Flotation. Cyprus Mineral Company (Englewood, CO), United States.
  • KANT, C., RAO, S.R., FINCH, J.A., 1994. Distribution of surface metal ions among the products of chalcopyrite flotation. Miner. Eng. Vol. 7, pp. 905–916. https://doi.org/10.1016/0892-6875(94)90132-5
  • KANTAR, C., 2002. Solution and flotation chemistry of enargite.Colloids and Surfaces A: Physicochem. Eng. Aspects.210, 23–31. https://doi.org/10.1016/S0927-7757(02)00197-8
  • KAPPES, R., BROSNAHAN, D., GATHJE, J., 2007. Characterisation of copper flotation products utilizing the JKMRC/FEI mineral liberation analyser (MLA). SME Annual Meeting, pp. 1–9.
  • LASTRA, R., PAKTUNC, D., 2016. An estimation of the variability in automated quantitative mineralogy measurements through inter-laboratory testing. Miner. Eng.95, 138-145. https://doi.org/10.1016/j.mineng.2016.06.025
  • LONG, G., PENG, Y., BRADSHAW, D., 2014. Flotation separation of copper sulphides from arsenic minerals at Rosebery copper concentrator. Miner. Eng.66–68, 207–214. https://doi.org/10.1016/j.mineng.2014.04.003
  • MESHKAT, A., VAEZI, M.J., BABALUO, A.A., 2018. Study the Effect of Seeding Suspension Concentration of DD3R Particles on the Modified Surface of Α-Alumina Support for Preparing DD3R Zeolite Membrane with High Quality. Emer. Sci. J. 2, 53-58. http://dx.doi.org/10.28991/esj-2018-01127
  • PINEDA, D., PLACKOWSKI, C., NGUYEN, A. V., 2015. Surface properties of enargite in MAA depressant solutions. Miner. Eng. 71, 180–187. https://doi.org/10.1016/j.mineng.2014.10.008
  • PLACKOWSKI, C., HAMPTON, M.A., BRUCKARD, W. J., NGUYEN, A .V., 2014. An XPS investigation of surface species formed by electrochemically induced surface oxidation of enargite in the oxidative potential range. Miner. Eng. 55, 60–74. https://doi.org/10.1016/j.mineng.2013.08.010
  • PLACKOWSKI, C., HAMPTON, M. A., NGUYEN, A. V., BRUCKARD, W. J., 2013. Fundamental Studies of Electrochemically Controlled Surface Oxidation and Hydrophobicity of Natural Enargite. Langmuir. 29, 2371–2386. https://doi.org/10.1021/la3043654
  • PLACKOWSKI, C., NGUYEN, A. V., BRUCKARD, W. J., 2012. A critical review of surface properties and selective flotation of enargite in sulphide systems.Miner. Eng.30, 1–11. https://doi.org/10.1016/j.mineng.2012.01.014
  • REZAEE, M., GHOMESHEH, P.K., HOSSEINI, A.M., 2017. Electrokinetic Remediation of Zinc and Copper ContaminatedSoil: A Simulation-based Study. Civil. Eng. J. 3, 690-700. http://dx.doi.org/10.21859/cej-03096
  • RUMBALL, J. A., RICHMOND, G.D., 1996. Measurement of oxidation in a base metal flotation
  • SENIOR, G. D.,GUY, P. J.,BRUCKARD, W. J., 2006.The selective flotation of enargite from other copper minerals–a single mineral study in relation to beneficiation of the Tampakan deposit in the Philippine. Int. J. Miner. Process. 81, 15–26. https://doi.org/10.1016/j.minpro.2006.06.001
  • SENIOR, G.D., TRAHAR, W.J., 1991. The influence of metal hydroxides and collector on the flotation of chalcopyrite. Int. J. Miner. Process. 33: 321–341. https://doi.org/10.1016/0301-7516(91)90061-M
  • SHANNON, L.K.,TRAHAR, W.J., 1986. The role of collector in sulphide ore flotation. In: P. Somasundaran (Editor), Proc. Symp. Advances in Mineral Processing, pp. 408–425.
  • SMART, R. St. C., 1991. Surface layers in base metal sulphide flotation.Miner. Eng.4(7–1l), 891–909. https://doi.org/10.1016/0892-6875(91)90072-4
  • SMITH, L. K.,BRUCKARD, W. J., 2007. The separation of arsenic from copper in a Northparkes copper–gold ore using controlled–potential flotation. Int. J. Miner. Process. 84, 15–24. https://doi.org/10.1016/j.minpro.2007.05.002
  • TAJADOD, J.,YEN, W. T., 1997. A comparison of surface properties and flotation characteristics of enargite and chalcopyrite. In: Proc. of the XX IMPC, Aachen, Germany, vol. 3, pp. 409–418.
  • TAYEBI-KHORAMI, M., MANLAPIG, E., FORBES, E., 2017. Relating the Mineralogical Characteristics of Tampakan Ore to Enargite Separation. Minerals. 7, 77. https://doi.org/10.3390/min7050077
  • TAYEBI-KHORAMI, M., MANLAPIG, E., FORBES, E., BRADSHAW, D., EDRAKI, M., 2017. Selective flotation of enargite from copper sulphides in Tampakan deposit. Miner. Eng. 112, 1–10. https://doi.org/10.1016/j.mineng.2017.06.021
  • TAYEBI-KHORAMI, M., MANLAPIG, E., FORBES, E., EDRAKI, M., BRADSHAW, D., 2018. Effect of surface oxidation on the flotation esponse of enargite in a complex ore system. Miner. Eng. 119, 149–155. https://doi.org/10.1016/j.mineng.2018.01.024
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-529d9826-1987-48f1-962d-0949f3726d18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.