PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Determination of lithium bioretention by maize under hydroponic conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Określenie bioretencji litu przez kukurydzę w warunkach kultur hydroponicznych
Języki publikacji
EN
Abstrakty
EN
Irrigation of cultivated plants can be a source of toxic lithium to plants. The data on the effect of lithium uptake on plants are scant, that is why a research was undertaken with the aim to determine maize ability to bioaccumulate lithium. The research was carried out under hydroponic conditions. The experimental design comprised 10 concentrations in solution differing with lithium concentrations in the aqueous solution (ranging from 0.0 to 256.0 mg Li ∙ dm-3 of the nutrient solution). The parameters based on which lithium bioretention by maize was determined were: the yield, lithium concentration in various plant parts, uptake and utilization of this element, tolerance index (TI) and translocation factor (TF), metal concentrations in the above-ground parts index (CI) and bioaccumulation factor (BAF). Depression in yielding of maize occurred only at the highest concentrations of lithium. Lithium concentration was the highest in the roots, lower in the stems and leaves, and the lowest in the inflorescences. The values of tolerance index and EC50 indicated that roots were the most resistant organs to lithium toxicity. The values of translocation factor were indicative of intensive export of lithium from the roots mostly to the stems. The higher uptake of lithium by the above-ground parts than by the roots, which primarily results from the higher yield of these parts of the plants, supports the idea of using maize for lithium phytoremediation.
PL
Celem badań było określenie zdolności kukurydzy do bioakumulacji litu. Badania prowadzono w warunkach kultur wodnych. Schemat doświadczenia obejmował 10 obiektów różniących się stężeniem litu w roztworze wodnym, w zakresie od 0.0–256.0 mg Li∙dm-3 pożywki. Jako parametry, na podstawie których określono bioretencję litu przez kukurydzę przyjęto: plon, zawartość litu w różnych częściach rośliny, pobranie i wykorzystanie tego pierwiastka oraz indeksy: tolerancji plonu (TI), translokacji (TF), stężenia metalu w częściach nadziemnych (CI) i bioakumulacji (BAF). Depresja plonowania kukurydzy wystąpiła przy dawce 128 i 256 mg Li ∙ dm-3. Na podstawie uzyskanych wyników stwierdzono, że korzenie charakteryzowały się największymi zawartościami litu, natomiast niższymi łodygi i liście, a najmniejszymi kwiatostany. Wartości indeksu translokacji świadczą o intensywnym przemieszczaniu się litu z korzeni do części nadziemnych. Najwięcej litu pobrały łodygi, następnie korzenie, liście, a najmniej kwiatostan. Pobranie litu przez kukurydzę, w zależności od obiektu, wahało się od 2.31 do 24.36% w stosunku do ilości wprowadzonej do obiektu. Najmniejszy fi toodzysk odnotowano w obiektach, w których zastosowano największe ilości litu (3200-6400 mg Li akwarium-1), co zapewne było związane z dużymi dawkami litu oraz niskim plonowaniem i pobraniem tego pierwiastka przez kukurydzę.
Rocznik
Strony
94--104
Opis fizyczny
Bibliogr. 47 poz., tab.
Twórcy
  • University of Agriculture in Krakow, Poland
autor
  • University of Agriculture in Krakow, Poland
  • University of Agriculture in Krakow, Poland
  • University of Agriculture in Krakow, Poland
Bibliografia
  • [1]. Alexander, B., Browse, D.J., Reading, S.J. & Benjamin, I.S. (1999). A simple and accurate mathematical method for calculation of the EC50, Journal of Pharmacological and Toxicological Methods, 41 (2-3), pp. 55-58. DOI:10.1016/S1056-8719(98)00038-0.
  • [2]. Allender, W.J., Cresswell, G.C., Kaldor, J. & Kennedy, I.R. (1997). Effect of lithium and lanthanum on herbicide induced hormesis in hydroponically-grown cotton and corn, Journal of Plant Nutrition, 20, 1, pp. 81-95. DOI:10.1080/01904169709365235.
  • [3]. Al-Thyabat, S., Nakamura, T., Shibata, E. & Iizuka, A. (2013). Adaptation of minerals processing operations for lithiumion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review, Minerals Engineering, 45, pp. 4-17. DOI:10.1016/j.mineng.2012.12.005.
  • [4]. An, R., Chen, Q.J., Chai, M.F., Lu, P.L., Su, Z., Qin, Z.X., Chen, J. & Wang, X.C. (2007). AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter, The Plant Journal, 49, 4, pp. 718-728. DOI:10.1111/j.1365-313X.2006.02990.x.
  • [5]. Antonkiewicz, J. & Para, A. (2016). The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals, International Journal of Phytoremediation, 18, 3, pp. 245-250. DOI:10.1080/15226514.2015.1078771.
  • [6]. Antonkiewicz, J., Jasiewicz, C., Koncewicz-Baran, M. & Sendor, R. 2016. Nickel bioaccumulation by the chosen plant species. Acta Physiologiae Plantarum, 38, 40, pp. 11. DOI:10.1007/s11738-016-2062-5.
  • [7]. Aral, H. & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment - a literature review, Ecotoxicology and Environmental Safety, 70, 3, pp. 349-356. DOI:10.1016/j.ecoenv.2008.02.026.
  • [8]. Audet, P. & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective, Environmental Pollution, 147, pp. 231-237. DOI:10.1016/j.envpol.2006.08.011.
  • [9]. Bingham, F.T., Bradford, G.R. & Page, A.L. (1964). Toxicity of lithium to plants, California Agriculture, 18, 9, pp. 6-7.
  • [10]. Borowiak, K., Kanclerz, J., Mleczek, M., Lisiak, M. & Drzewiecka, K. (2016). Accumulation of Cd and Pb in water, sediment and two litoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem. Archives of Environmental Protection, 42, 3, pp. 47-57. DOI:10.1515/aep-2016-0032.
  • [11]. Bradford, G.R. (1963). Lithium California’s water resources, California Agriculture, 17, 5, pp. 6-8.
  • [12]. Calabrese, E.J. & Baldwin, L.A. (2003). Hormesis: The dose-response revolution, Annual Reviews of Pharmacology and Toxicology, 43, pp. 175-197. DOI:0.1146/annurev.pharmtox.43.100901.140223.
  • [13]. Enghag, P. (2008). Encyclopedia of the Elements: Technical Data-history-processing applications, Wiley-VCH, Weinheim 2008.
  • [14]. Forbes, V.E. (2000). Is hormesis an evolutionary expectation? Functional Ecology, 14, 1, pp. 14-24. DOI:10.1046/j.1365-2435.2000.00392.x.
  • [15]. Franzaring, J., Schlosser, S., Damsohn, W. & Fangmeier, A. (2016). Regional differences in plant levels and investigations on the phytotoxicity of lithium, Environmental Pollution, 216, pp. 858-865. DOI:10.1016/j.envpol.2016.06.059.
  • [16]. Garzon, C.D. & Flores, F.J. (2013). Hormesis: Biphasic dose-responses to fungicides in plant pathogens and their potential threat to agriculture, Agricultural and Biological Sciences. Fungicides - Showcases of Integrated Plant Disease Management from Around the World. 12, pp. 311-328. DOI:10.5772/55359.
  • [17]. Hawrylak-Nowak, B., Kalinowska, M. & Szymańska, M. (2012). A study on selected physiological parameters of plants grown under lithium supplementation, Biological Trace Element Research, 149, 3, pp. 425-430. DOI:10.1007/s12011-012-9435-4.
  • [18]. Hoagland, D.R. & Arnon, D.I. (1950). The water-culture method for growing plants without soil, California Agriculture Experiment Station Circular, 347, pp. 1-32.
  • [19]. Hull, S.L., Oty, U.V. & Mayes, W.M. (2014). Rapid recovery of benthic invertebrates downstream of hyperalkaline steel slag discharges, Hydrobiologia, 736, pp. 83-97.
  • [20]. Jurkowska, H. & Rogóż, A. (1991). Uptake of lithium by plants as depending on soil moisture content, Polish Journal of Soil Science, 24, pp. 93-97.
  • [21]. Jurkowska, H., Rogóż, A. & Wojciechowicz, T. (1998). Comparison of lithium toxic influence on some cultivars of oats, maize and spinach, Acta Agraria et Silvestria. Series Agraria, 36, pp. 37-42. (in Polish)
  • [22]. Jurkowska, H., Rogóż, H. & Wojciechowicz, T. (2003). Phytotoxicity of lithium on various soils, Polish Journal of Soil Science, 36, 1, pp. 71-76.
  • [23]. Kabata-Pendias, A. & Pendias, H. (1992). Trace Elements in Soils and Plants, second ed. CRC Press, Boca Raton, London 1992.
  • [24]. Kabata-Pendias, A. & Pendias, H. (1999). Biogeochemistry of trace elements, Wyd. Nauk. PWN, Warsaw 1999. (in Polish)
  • [25]. Kabata-Pendias, A. & Mukherjee, A.B. (2007). Trace elements from soil to human, Springer-Verlag Berlin Heidelberg 2007.
  • [26]. Kalinowska, M., Hawrylak-Nowak, B. & Szymańska, B. (2013). The influence of two lithium forms on the growth, L-Ascorbic acid content and lithium accumulation in lettuce plants, Biological Trace Element Research, 152, 2, pp. 251-257. DOI:10.1007/s12011-013-9606-y.
  • [27]. Kayihan, C., Eyidogan, F., Afsar, N., Oktem, H.A. & Yucel, M. (2012). Cu/Zn superoxide dismutase activity and respective gene expression during cold acclimation and freezing stress in barley cultivars, Biologia Plantarum, 56, 4, pp. 693-698. DOI:10.1007/s10535-012-0143-x.
  • [28]. Kusznierewicz, B., Bączek-Kwinta, R., Bartoszek, A., Piekarska, A., Huk, A., Manikowska, A., Antonkiewicz, J., Namieśnik, J. & Konieczka, P. (2012). The dose-dependent infl uence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica Oleracea var. Capitata F. Alba), Environmental Toxicology and Chemistry, 31, 11, pp. 2482-2489. DOI:10.1002/etc.1977.
  • [29]. Léonard, A., Hantson, Ph. & Gerber, G.B. (1995). Mutagenicity, carcinogenicity and teratogenicity of lithium compounds, Mutation Research, 339, 3, pp. 131-137. DOI:10.1016/0165- 1110(95)90007-1.
  • [30]. Li, X., Gao, P., Gjetvaj, B.,Westcott, N. & Gruber, M.Y. (2009). Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure, Plant Science, 177, 1, pp. 68-80. DOI:10.1016/j.plantsci.2009.03.013.
  • [31]. Lintschinger, J., Fuchs, N., Moser, H., Jäger, R., Hlebeina, T., Markolin, G. & Gössler, W. (1997). Uptake of various trace elements during germination of wheat, buckwheat and quinoa, Plant Foods for Human Nutrition, 50, 3, pp. 223-237. DOI:10.1007/BF02436059.
  • [32]. Lu, Y., Li, X., He, M., Zhao, X., Liu, Y., Cui ,Y., Pan, Y. & Tan, H. (2010). Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass, Acta Physiologiae Plantarum, 32, pp. 583-590. DOI:10.1007/s11738-009-0436-7.
  • [33]. Mackay, D. & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: mechanisms and models, Environmental Pollution, 110, pp. 375-391. DOI:S0269-7491(00)00162-7
  • [34]. Małachowska-Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41, 4, pp. 104-114. DOI:10.1515/aep-2015-0045
  • [35]. Marchiol, L., Sacco, P., Assolari, S. & Zerbi, G. (2004). Reclamation of polluted soil: phytoremediation potential of crop-related Brassica Species, Water, Air and Soil Pollution, 158, pp. 345-356. DOI:10.1023/B:WATE.0000044862.51031.fb.
  • [36]. McStay, N.G., Rogers, H.H. & Anderson, C.E. (1980). Effects of lithium on Phaseolus vulgaris L., Science of the Total Environment, 16, 2, pp. 185-191. DOI:10.1016/0048-9697(80)90023-6.
  • [37]. Murphy, A. & Tayz, L. (1995). A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis (ecotypic variation and copper-sensitive mutants), Plant Physiology, 108, pp. 29-38. DOI:10.1104/pp.108.1.29.
  • [38]. Naranjo, M.A., Romero, C., Bellés, J.M., Montesinos, C., Vicente, O. & Serrano, R. (2003). Lithium treatment induces a hypersensitive-like response in tobacco, Planta, 217, 3, pp. 417-424. DOI:10.1007/s00425-003-1017-4.
  • [39]. Ostrowska, A., Gawliński, S. & Szczubiałka, Z. (1991). Methods of analysis and assessment of soil and plant properties. A Catalogue, Institute of Environmental Protection - National Research Institute, Warsaw 1991.
  • [40]. Rizwan, M., Ali, S., Qayyum, M.F., Ok, Y.S., Zia-ur-Rehman, M., Abbas, Z. & Hannan, F. (2016). Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review, Environmental Geochemistry and Health, 39(2), pp. 259-277. DOI:10.1007/s10653-016-9826-0.
  • [41]. Ruus, A., Schaanning, M., Øxnevad, S. & Hylland, K. (2005). Experimental results on bioaccumulation of metals and organic contaminants from marine sediments, Aquatic Toxicology, 72(3), pp. 273-292. DOI:10.1016/j.aquatox.2005.01.004.
  • [42]. Schrauzer, G.N. (2002). Lithium: Occurrence, Dietary Intakes, Nutritional Essentiality, Journal of American College Nutrition, 21, pp. 14-21.
  • [43]. Shacklette, H.T. & Boerngen, J.G. (1984). Element. Concentration in Soils and Other Surfi cial Materials of the Conterminous United States, Geological Survey Professional Paper, p. 1270, United States Government Printing Office, Washington 1984.
  • [44]. Shahzad, B., Mohsin, T., Waseem, H., Shah, A.N., Shakeel, A.A., Cheema, S.A. & Iftikhar, A. (2016). Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities - A review, Plant Physiology and Biochemistry, 107, pp. 104-115.
  • [45]. Szentmihalyi, S., Siegert, E., Hennig, A., Anke, M. & Groppel, B. (1985). Zinc contents of fl ora in relation to age. geology of soil and plant species. Proc. Macro- and Trace Element. Seminar, University Leipzig-Jena, Germany 1985.
  • [46]. Zonia, L.E. & Tupy, J. (1995). Lithium-sensitive calcium activity in the germination of apple (Malus × domestica Borkh.), tobacco (Nicotiana tabacum L.), and potato (Solanum tuberosum L.) pollen, Journal of Experimental Botany, 46, 8, pp. 973-979. DOI:10.1093/jxb/46.8.973.
  • [47]. Yalamanchali, R.C. (2012). Lithium, an emerging environmental contaminant, is mobile in the soil-plant system, A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Applied Science At Lincoln University. Lincoln University. Lincoln 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5299b5f3-341c-4f56-bdab-89ab991208ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.