Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the possibilities of using clustering algorithms to group and visualize data from blood tests of various people in the context of alcohol consumption impact on measured blood parameters. The presented results should be considered as the preliminary to the future works involving automatic visualization of medical data by using clustering algorithms. The authors present the results of clustering of the above data using k-medoids algorithm along with the proposition of visualization. The authors used as a set of input data "BUPA liver disorders" medical base taken from the Machine Learning Repository [7].
Słowa kluczowe
Rocznik
Tom
Strony
63--70
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
autor
- Institute of Computer Science, University of Silesia, Będzinska 39, 41–200 Sosnowiec, Poland
autor
- Institute of Computer Science, University of Silesia, Będzinska 39, 41–200 Sosnowiec, Poland
Bibliografia
- [1] ABONYI J., FEIL B., Cluster Analysis for Data Mining and System Identification, Birkhäuser Verlag AG, 2007.
- [2] ALSABTI K., RANKA S., SINGH V., An Efficient k-means Clustering Algorithm, Proc. First Workshop High Performance Data Mining, 1998.
- [3] CIOS K. J., PEDRYCZ W., ŚWINIARSKI R. W., KURGAN L.A., Data mining. A Knowledge Discovery Approach, Springer Science+Business Media.
- [4] CHU S. C., RODDICK J. F., CHEN T. Y., PAN J. S., Efficient search approaches for k-medoids-based algorithms, TENCON ’02, Proceedings, 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, 2002.
- [5] CHU S. C., RODDICK J. F., PAN J. S., An Efficient K -MedoidsBased Algorithm Using Previous Medoid Index, Triangular Inequality Elimination Criteria, and Partial Distance Search, 4th International Conference on Data Warehousing and Knowledge Discovery, 2002.
- [6] ESTER M., KRIEGEL H. P., SANDER J., XU X., A density -based algorithm for discovering clusters in large spatial databases, Proc. Int. Conf. Knowledge Discovery and Data Mining (KDD’96), 1996.
- [7] FRANK A., ASUNCION A., UCI Machine Learning Repository [http://archive.ics.uci.edu/ml], Irvine, CA: University of California, School of Information and Computer Science, 2010.
- [8] JAIN A. K., DUBES R. C., Algorithms for clustering data, New Jersey: Prentice Hall, 1988.
- [9] KAUFMAN L., MASSART D. L., The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis, 1983.
- [10] KAUFMAN L., ROUSSEEUW P., Finding Groups in Data: An Introduction to Cluster Analysis, New York: Wiley, 1990.
- [11] KOCYBA J., Grupowanie danych zawartych w logach systemowych, Master Thesis, University of Silesia, 2013.
- [12] MATHEUS C. J., CHAN P. K., PIATETSKY-SHAPIRO G., Systems for Knowledge Discovery in Databases, IEEE Transactions on Knowledge and Data Engineering, 1993.
- [13] MERCER D. P., Clustering large datasets, Linacre College, 2003.
- [14] MOORE D. S., The Basic Practice of Statistics, Purdue University, 2010.
- [15] MUMTAZL K., DURAISWAMY K., A Novel Density based improved k-means Clustering Algorithm - kmeans International Journal on Computer Science and Engineering, 2010.
- [16] MYATT G. J., Making Sense of Data A Practical Guide to Exploratory Data Analysis and Data Mining, New Jersey: John Wiley and Sons, Inc, 2007.
- [17] NG R.T., HAN J., CLARANS: A Method for Clustering Objects for Spatial Data Mining, IEEE Transactions on knowledge and data engineering, 2002.
- [18] PARK H. S., JUN C. H., A simple and fast algorithm for K-medoids clustering, Expert Systems with Applications, 2009.
- [19] SIMIŃSKI R., NOWAK-BRZEZIŃKA A., JACH T., XIĘSKI T., Towards a practical approach to discover internal dependencies in rule-based knowledge bases, Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Springer /Heidelberg, Berlin, 2011, pp. 232-237.
- [20] SUH S. C., Practical Applications of Data Mining, 2012.
- [21] ZHANG T., RAMAKRISHNAN R., LIVNY M., BIRCH: An efficient data clustering method for very large databases, In: SIGMOD Conference, 1996.
- [22] ZHONG N., LIU J., YAO Y., Web Intelligence Meets Brain Informatics, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5294d353-f5c4-4425-a9da-0800d2d89c25