PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concept of a Composite Frame of a Martian Vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented article describes the design and strength analysis of the frame of the Mars rover, which will start in the European Rover Challenge. The shape of the frame is determined by the six-wheeled rocker-bogie suspension chosen for the project, which is characterized by high stability and even distribution of wheel pressure on the ground and a reduction in the vibration frequency of the frame in which the vehicle electronics are located. The adopted slants counteract the swinging frame on the suspension, which has been checked by kinematic analysis. The design uses the concept of a frame structure made of sandwich walls, consisting of: 3D printed elements - an openwork grille with a honeycomb structure, a low-pressure foam filler and a carbon composite made of a combination of three layers of carbon fiber mat with a 1z1 weave and 0/45 /90 orientation with Epidian 5 epoxy resin ensuring equal spacing between the layers. Such a combination of materials allowed for a very durable and light structure with a significant reduction in weight compared to the original concept - an aluminum frame. A "cross"-shaped support element was also used, connecting the upper part of the frame with the lower one - also made in the 3D printing technique, which is also a link between the frame and suspension. The analysis showed that the materials and sections of structural elements adopted for the project are appropriate for the assumed load. In the case of unloading from the manipulator, the authors proposed to increase the safety factor due to the possibility of an additional load from dynamic forces. In places where reduced stresses reach increased values, additional reinforcements are provided.
Słowa kluczowe
Twórcy
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warszawa, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warszawa, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warszawa, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warszawa, Poland
Bibliografia
  • 1. Batko W., Dąbrowski Z. Nowoczesne metody badania procesów wibroakustycznych (zastosowania techniczne) p. II, ITE – PIB, 2006.
  • 2. Bielawski R., Rządkowski W., Kowalik M., Kłonica M. Safety of aircraft structures in the context of composite element connection. International Review of Aerospace Engineering (I.RE.AS.E). 2020;13(5):159-164. DOI: 10.15866/irease.v13i5.18805
  • 3. Boczkowska A., Krzesiński G. Kompozyty i techniki ich wytwarzania. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa; 2016.
  • 4. Buckley J.D., Edie D.D. Carbon - Carbon Materials and Composites. Noyes Publications; 1993.
  • 5. Dąbrowski H., Wstęp do mechaniki materiałów kompozytowych, 1989.
  • 6. Gryz K. Engineering thesis - A concept of a special vehicle’s manipulator. Warszawa; 2021.
  • 7. Kapuściński J. Projektowanie i technologia materiałów kompozytowych; 1983.
  • 8. Karczmarzyk S. Modelowanie komputerowe w praktyce inżynierskiej. Statyczny model prostokątnej płyty typu sandwich; 2018.
  • 9. Kłonica M., Bielawski R. Strength of Joints with “Hi-Lok” Fasteners in Aircraft Safety Considerations. Advances in Science and Technology Research Journal. 2019;13(4):87–93. DOI: 10.12913/22998624/114179
  • 10. Kurnik W., Tylikowski A. Mechanika elementów laminowanych; 1997.
  • 11. Leda H. Kompozyty polimerowe z włóknami ciągłymi; 2006.
  • 12. Markuszewski D. Comparison of various types of damage symptoms in the task of diagnostic composite profiles. Diagnostyka. 2019;20(3):105-110. DOI 10.29354/diag/111799
  • 13. Podembski K., Suspension - internal materials of KN Bekker Team.14. Sclater N., Chironis N.P. Mechanisms and mechanical devices sourbook; 2011.
  • 15. Skórski W., Zawisza M. Influence of the composite modification of the wooden wing skin of the glider on deflection lines and resonance vibrations. Polimery. 2019;64(4):267-271.
  • 16. Vasiliev V.V., Morozov E.V. Advanced Mechanics of Composite Materials. Elseviere; 2007.
  • 17. Wilczyński A.P. Polimerowe kompozyty włókniste. WNT; 1996.
  • 18. https://roverchallenge.eu/en/publishing-the-erc-pro-rules-and-the-erc-student-rules-update/
  • 19. https://spidersweb.pl/autoblog/perseverance-opportunity-spirit-lazik-marsjanski/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-529441ca-9327-46bd-a967-185342f02daa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.