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1. Introduction

Fractional calculus is not a new idea. It was mentioned first 
time in 1695 in a letter from L’Hopital to Leibniz [12]. L’Ho-
pital asked a question about the n-th derivative of the linear 
function – what would happen if n would be ½.

With the increasing computational speed of computers, we 
can solve more and more difficult mathematical problems. 
One of those is fractional order calculus, which requires a lot 
of computing power. Many papers deal with this subject in 
various aspects, e.g. adaptive control [30], chaotic systems [7, 
31], Kalman filter [27], PID controller [29]. 

The use of fractional calculus in digital control requires to 
implement the basic element sγ at a digital platform. It can be 
done in different ways and using different hardware platforms. 
The PLC implementation is discussed, i.e. in [16]. The micro-
controller implementation using the discrete ORA approxima-
tion is thoroughly discussed [1, 2, 25, 28]. However, unlike this 
article, the mentioned papers do not deal with performance 
analysis of microcontroller implementations of fractional calcu-
lations. Such an analysis is necessary to the industrial, micro-
controller-based implementation of fractional-order controllers, 
for example, fractional-order PID controller. Based on this 
paper, it will be possible to conclude whether the complicated 
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calculations for a controller with a fractional-order calculus 
can be performed on microcontrollers for real-time systems. 

This paper deals with the classic discrete approximations: 
Continuous Fraction Expansion (CFE) and Fractional Order 
Backward Difference (FOBD), basing on the Grünwald-Let-
nikov definition. It is analysed with details, for example, in 
the book [23]. The main difference between those approxima-
tions (CFE and FOBD) consists of memory length necessary 
to obtain the reasonable accuracy and form of discrete transfer 
function describing it [13]. The CFE requires us to use much 
less memory and is faster convergent, but its accuracy is gen-
erally a little bit worse than FOBD. Furthermore, it requires 
us to use past values of both output and control signals. On 
the other hand, the FOBD assures better accuracy, but the 
memory length necessary to achieve this accuracy is relatively 
much bigger.

This paper is devoted to discussing both the accuracy and 
speed of calculations. The paper is organised as follows. In the 
beginning, elementary ideas from discrete fractional calculus 
are recalled. Particularly the discrete version of the Grün-
wald-Letnikov definition and CFE approximation are given. 
Next, the experimental system is presented, and results of 
experiments are given and discussed.

2. Preliminaries 

A presentation of elementary ideas is started with a definition 
of a fractional-order, integro-differential operator. It was given, 
for example by [6, 11, 26]:
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Definition 1. (The elementary fractional-order operator) 
The fractional-order integro-differential operator is defined 
as follows:

 

 (1)

where a and t denote time limits for operator calculation, g  ∈ R 
the non-integer order of the operation.

Next, the complete Gamma function needs to be recalled:

 
 (2)

The fractional-order, the integro-differential operator can 
be described by different definitions, given by Grünwald and 
Letnikov (GL definition), Riemann and Liouville (RL defini-
tion) and Caputo (C definition). In further consideration, GL 
definition will be used. It is as follows [4, 23]:

Definition 2. (The Grünwald-Letnikov definition of the 
FO operator)

 
 (3)
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is the binomial coefficient:
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The GL definition is the limit case for h → 0 of the Fractional 
Order Backward Difference (FOBD), commonly employed in 
discrete Fractional Order (FO) calculations (see for example 
[23], p. 68):

Definition 3. (The Fractional Order Backward Differ-
ence-FOBD)
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The coefficients (6) can also be calculated with the use of 
the following, equivalent recursive formula (see for example [4], 
p. 12), useful in numerical calculations:
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It is proven in [3] that:
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From (7) and (8) we obtain at once that:
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The expression (5) with coefficients calculated using (7) can 
be directly implemented at microcontroller to calculate frac-
tional-order difference or integral.

An alternative formula to calculate FO operator is to use 
CFE approximation. It has the form of Infinite Impulse 
Response (IIR) filter containing both poles and zeros. It is 
faster convergent and easier to implement due to its relatively 
low order, typically not higher than 5. It has the form of the 
discrete transfer function GCFE(z−1, g), obtained after discreti-
sation of the fractional-order element sg, g ∈   with the use of 
the so-called generating function s ≈ w(z−1). The new opera-
tor raised to power g has the following form (see for example 
[5], [24, p. 119]):

  
(10)

In (10) a is the coefficient depending on approximation type 
(for example: a = 0 for Euler approximation, a = 1 for Tustin 
approximation), h denotes the sample time, M is the order 
of approximation. If the Tustin approximation is considered 
(a = 1) then CFED(z−1, g) = CFEN(z−1,−g) and the polyno-
mial CFED(z−1, g) can be given in the direct form (see [5]). 
Examples of polynomial CFED(z−1, g) for M = 1, 3, 5 are given 
in Table 1.

Table 1. Coefficients of CFE polynomials CFEN,D(z−1, γ) for Tustin 
approximation based on [5]
Tabela 1. Współczynniki wielomianów CFE CFEN,D(z−1, γ) 
dla aproksymacji Tustina na podstawie [5]

Order M wm vm

M = 1 w1 = −g

w0 = 1

v1 = g

v0 = 1

M = 3 w3 = −g/3

w2 = g2/3

w1 = −g

w0 = 1

v3 = g/3

v2 = g2/3

v1 = g

v0 = 1

M = 5 w5 = −g/5

w4 = g2/5

w3 = −(g/5 + 2g3/35)

w2 = 2g2/5

w1 = −g

w0 = 1

v5 = g/5

v4 = g2/5

v3 = − (−g/5 − 2g3/35)

v2 = 2g2/5

v1 = g

v0 = 1
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Finally, the analytical formula of the step response for the 
basic FO element s g should be recalled. It is as follows [4]:

 
.

)1(
)(

γ

γ

−Γ
=

−tty  (11)

where Γ(..) is the complete Gamma function (2). The above 
formula will be employed as the reference to estimate the 
accuracy of approximations implemented at a microcontroller.

3. The experimental microcontroller 
platform

The diagram of the embedded system used in experiments is 
shown in Figure 1. The STM32F767ZI device is based on the 
high-performance Arm Cortex-M7 32-bit RISC core operat-
ing at up to 216 MHz frequency. The Cortex-M7 core features 
a floating-point unit (FPU) which supports Arm double-preci-
sion and single-precision data-processing instructions and data 
types. It also implements a full set of digital signal proces-
sor(DSP) instructions. The embedded system was tested using 
the following peripheral blocks integrated in the structure: 
static random-access memory (SRAM) memory for storing data 
tables, timers/counters units capable of interrupts and a serial 
port universal asynchronous receiver-transmitter (UART). 
The processed data are duly transmitted (via UART port),  
monitored and uploaded to a PC.

are implemented in the form of timer interrupt service rou-
tine. A selected STM32F7 timer device generates one interrupt 
every 0.02 s. Notably, the time the interrupt-driven procedure 
is incorporating a code of two approximation methods: CFE 
and FOBD (but only one can be active at a time). All data 
necessary for the correct operation of the calculation procedure 
(transfer function parameters for CFE, historical data for CFE 
and FOBD methods, etc.) are stored in the processor RAM. 
Input signals used to perform functional tests of CFE and 
FOBD methods are generated by software (e.g. step, square 
wave, sine wave). It is also possible to use external input sig-
nals, connected, for example, to A/D converter, PWM digital 
input or set via a selected serial interface.

The input (control) and output (results) data are transferred 
to the PC (MATLAB application) by using a serial UART 
interface. The source files of all elements of the application 
are written with the use of C language.

5. Cost functions

Cost function describes a difference between analytical step 
response (11) and approximated step responses using CFE and 
FOBD. They are calculated at the same time mesh with the 
sample time h. In this paper two cost functions were employed.

The first one is the MSE (Mean Square Error) cost function:
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In (12), Ks is the number of samples collected during the 
experiment. The analytical response in k-th time moment cal-
culated using (11) is denoted by y(k) = y(kh), k = 1, ..., Ks 
and the approximated response calculated at microcontroller 
in the same moment is denoted by ye(k).

The next considered cost function is the fitting function (13):
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In (13) ey  is the average value from experimental result ye.

6. Experiments

Experiments were executed for different parameters of CFE 
and FOBD methods. Recorded data are sampled with the fre-
quency of 50 Hz (the periodical interrupt-driven function of 
STM32 processor). The duration of the experiments was set 
to 20 s or 40 s. Measurement data were recorded, analyzed 
and processed using a PC with MATLAB/Simulink package.  
The CFE method parameters applied in experiments were fol-
lowing: sample time was equal: h = 0.02 s, the order of CFE 
approximation was equal M = 5, a = 0 (the Euler method was 
applied). In FOBD, the memory was L = 100 samples long. As 
the reference the analytical step response (11) was employed. 
It is worth noting that all calculations on the STM32F7 pro-
cessor carried out using double precision data type.

Figure 2 presents experimental frequency characteristic of 
the fractional differential unit of the CFE method with param-
eter g set as 0.5. Similar results are presented in Figure 3 for 
experimental frequency characteristic of the fractional integral 
unit of the CFE method with parameter g set as –0.5. The 
same plots were obtained for FOBD method. Figure 4 presents 
the experimental frequency characteristics of the fractional dif-

Fig. 1. The experimental system
Rys. 1. Układ eksperymentalny

Logic Analyser of the Logic Pro 16 (Saleae Corporation) is 
used to monitor and collect digital information from a digi-
tal I/Os of the embedded system. Two digital output pins of  
STM32F767ZI processor are used to measure the duration of 
calculations using the approximation of the digital fraction-
al-order  differentiator/integrator Tdf od and one step time dura-
tion of the differentiator/integrator unit step response TStep. 
The accuracy of time measurement is 20 ns (50 MSample/s). 
All the data is saved to specific log files to be analysed off-line.

4. Implementation

The application running on STM32F7 processor is generally 
divided into two parts. The first part contains the code respon-
sible for the hardware configuration and algorithm for calcu-
lating fractional-order operator parameters. This algorithm 
is activated after processor power-on reset and on demand, 
e.g. when a user changes the parameters of the approximating 
model (M, a, etc.) or fractional order of the operation. The 
two fractional modules: differentiator s a and integrator 1/s a 
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ferential unit of the FOBD method with parameter GAMMA 
set as 0.5. Similar results are presented in Figure 5 for experi-
mental frequency characteristics of the fractional integral unit 
of the FOBD method with parameter GAMMA set as –0.5. 
The results were obtained for the frequency range from 2.5 Hz 
to 50 Hz (both CFE and FOBD method).

Figure 6 presents the step responses of the fractional dif-
ferential unit for the three values of parameter g of the CFE 
method: 0.25, 0.5 and 0.75. The output values are not scaled 

Fig. 2. Experimental frequency characteristic of the derivative 
element, CFE approximation
Rys. 2. Eksperymentalna charakterystyka częstotliwościowa części 
różniczkującej, aproksymacja CFE

Fig. 5. Experimental frequency characteristic of the integral element, 
FOBD approximation
Rys. 5. Eksperymentalna charakterystyka częstotliwościowa części 
całkującej, aproksymacja FOBD

Fig. 3. Experimental frequency characteristic of the integral element, 
CFE approximation
Rys. 3. Eksperymentalna charakterystyka częstotliwościowa części 
całkującej, aproksymacja CFE

Fig. 6. The step responses of the derivative element, CFE 
approximation
Rys. 6. Odpowiedź skokowa części różniczkującej, aproksymacja CFE

Fig. 4. Experimental frequency characteristic of the derivative 
element, FOBD approximation
Rys. 4. Eksperymentalna charakterystyka częstotliwościowa części 
różniczkującej, aproksymacja FOBD

Fig. 7. The step responses of the integral element, CFE approximation
Rys. 7. Odpowiedź skokowa części całkującej, aproksymacja CFE
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by the factor k. Figure 7 compares the step responses of the 
fractional integral unit for the three values of parameter g of 
the CFE method: 0.25, 0.5 and 0.75. The output values are 
not scaled by the factor k. Figures 8 and 9 show the use of the 
FOBD approximation. Figure 7 compares the step responses 
of the fractional integral unit for the three values of parame-
ter g of the CFE method: 0.25, 0.5 and 0.75. The output val-
ues are not scaled by the factor k. The performance of both 
approximations in the sense of cost functions (12) and (13) is 
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as well as of the step response. Figure 10 shows trends of 
logic states for two STM32F767ZI processor digital outputs 
employed during measuring of the duration of coefficients cal-
culation Tdf od and step response calculation TStep. The total 
number of probes was equal to 1000.

The logic state of the output was reset before the execution 
of the analysed code section and then reset after task com-
pletion. The limits of the measurement procedure: Tdf od and 
TStep are marked with arrows in Figure 10. Both durations 

Fig. 8. The step responses of the derivative element, FOBD 
approximation
Rys. 8. Odpowiedź skokowa części różniczkującej, aproksymacja FOBD

Fig. 11. Histogram of the duration Tdf od for CFE
Rys. 11. Histogram czasu trwania Tdf od dla CFE

Fig. 9. The step responses of the integral element, FOBD 
approximation
Rys. 9. Odpowiedź skokowa części całkującej, aproksymacja FOBD

Fig. 12. Histogram of the duration Tdf od for FOBD
Rys. 12. Histogram czasu trwania Tdf od dla FOBD

Fig. 10. The sequence of tests during real-time measurements
Rys. 10. Sekwencja testów podczas pomiarów w czasie rzeczywistym

Fig. 13. Histogram of the duration TStep for CFE
Rys. 13. Histogram czasu trwania TStep dla CFE

presented in Tables 2 and 3. The analysis of both tables allows 
concluding that generally the use of FOBD allows obtaining 
an approximation more accurate in the sense of examined cost 
functions. The only exception is observed for g = 0.75 when 
the CFE is more accurate than FOBD. Generally, this conclu-
sion is not surprising.

The next important problem during tests of the proposed 
solution is meeting the real-time requirements. Tests of calcu-
lation speed should be done during calculation of coefficients 
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Fig. 14. Histogram of the duration TStep for FOBD
Rys. 14. Histogram czasu trwania TStep dla FOBD

Tdf od and TStep for CFE approximation are illustrated by his-
tograms 11 and 13, and for the FOBD method use are given 
in Figures 12 and 14.

Table 2. Values of the cost functions (12) and (13) for CFE approximation and different orders
Tabela 2. Wartości funkcji kosztów (12) i (13) dla aproksymacji CFE oraz różnych rzędów

g −0.25 −0.50 −0.75 0.25 0.5 0.75

MSE (12) 0.0067 0.0097 0.0047 0.0244 0.1117 0.1141

FIT (13) 1.0054 1.0462 1.0907 0.9281 0.9205 0.9064

Table 3. Values of the cost functions (12) and (13) for FOBD approximation and different orders
Tabela 3. Wartości funkcji kosztów (12) i (13) dla aproksymacji FOBD oraz różnych rzędów

g −0.25 −0.50 −0.75 0.25 0.5 0.75

MSE (12) 4.0130e-05 2.3069e-05 7.5951e-06 0.0029 0.1024 1.8874

FIT (13) 0.0305 0.0129 0.0056 0.2122 0.6061 2.0450

In histograms 11 and 12 we can see that the coefficients 
of the CFE approximation are calculated 100 times longer 
than for FOBD although their number is much smaller. Their 
higher computational complexity causes this (see Table 1). 
The coefficients of FOBD are computed according to a simple 
formula (7). It should be noted that in a real-time system, the 
approximation coefficients are calculated only once when the 
fractional order is changed.

Simultaneously, the computing of the step response, illus-
trated by histograms 13 and 14, is 100 times shorter using CFE 
than in case of the analogical computing using FOBD. This is 
caused by the smaller complexity of CFE approximation and 
shorter length of memory.

Finally, the differences in the performance of the STM32F7 
processor with FPU enabled (hardware double precision) and 
disabled (software double precision) were tested. Particu-
larly the mean values of Tdf od F and TStep obtained for FOBD 
method were compared. The mean value of Tdf od is approxi-
mately 64.6 times shorter for FPU enabled (53.4 ms vs. 3.372 
ms) while TStep is approximately 5 times shorter (0.1307 ms 
vs. 0.66 ms). This means that the most significant benefits 
are obtained for complex numerical algorithms related to 
the FOBD approximation parameters. Also, the use of the 

STM32F7 FPU enables efficient, multiple determination of 
FOPID controller parameters, depending on the CFE and 
FOBD approximation parameter set.

As mentioned before, the clock frequency set for the 
STM32F767 processor was 96 MHz while the maximum fre-
quency value given by the vendor is 216 MHz. Thus, the CFE 
or FOBD calculation durations can be further reduced. The 
unit experiments carried out at f = 216 MHz have enabled 
an approximately two-fold reduction in both durations Tdf od F 
(24.2 µs vs. 53.8 µs, FOBD) and TStep (78.8 ms vs. 0.1307 ms, 
FOBD), which is a direct result of the difference in frequency 
between 96 MHz and 216 MHz.

7. Conclusions

The main conclusion from the research is that the elementary 
fractional element sg can be implemented at the considered 
microcontroller platform using typical, discrete approxima-
tions. The performance of approximation in the sense of the 
MSE and FIT cost functions is satisfying as well as duration 
of calculations.

From the first experiments a conclusion could be drawn 
that generally the use of FOBD allows obtaining more accu-
rate approximation in the sense of examined cost functions in 
this paper. In the next experiments, data was collected show-
ing that calculation of Tdf od is much slower for CFE than for 
FOBD approximation. However, computation of step response 
for CFE approximation is much faster than for FOBD. In the 
last experiment, it was proven that when FPU is enabled on 
the STM32F7, the calculations were much shorter, signifi-
cantly for more complex numerical algorithms.

It is worth to add that the duration of calculations exe-
cuted with the use of the microcontroller is much shorter than 
analogic calculations implemented at PLC (see [16]). Thus, it 
allows running a single fractional order PID algorithm oper-
ating at a sampling frequency of up to 10 kHz.

The proposed solution is planned to be used during imple-
mentation of the self-tuned FOPID controller on this platform. 
The results of time tests allow concluding that the proposed 
implementation can be employed in hard real-time control sys-
tems.
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Streszczenie: W pracy przedstawiono implementację podstawowego układu ułamkowego rzędu sg,  
g  na platformie mikrokontrolera STM32. Implementacja wykorzystuje typowe aproksymacje CFE 
oraz FOBD. Dokładność aproksymacji oraz czas trwania obliczeń testowane są eksperymentalnie. 
Implementacja układów ułamkowych na mikrokontroler jest znana, jednak ich testy w czasie 
rzeczywistym nie były jak dotąd omawiane w literaturze. Wyniki wskazują, że obie metody można 
wdrożyć na rozważanej platformie. Aproksymacja FOBD jest dokładniejsza, z kolei CFE jest szybsza. 
Przedstawione rezultaty eksperymentów dowodzą, że procesor z rodziny STM32F7 może zostać 
wykorzystany do opracowania wbudowanych ułamkowych układów sterowania dla szerokiej klasy 
liniowych i nieliniowych układów dynamicznych. Zaprezentowane wyniki są istotne z punktu widzenia 
implementacji algorytmów ułamkowych w twardych systemach czasu rzeczywistego lub w systemach 
wbudowanych. 

Słowa kluczowe: układy ułamkowe, mikrokontroler, STM32, FOBD, aproksymacja CFE
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