Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Alzheimer’s disease is a type of dementia that can cause problems with human memory, thinking and behavior. This disease causes cell death and nerve tissue damage in the brain. The brain damage can be detected using brain volume, whole brain form, and genetic testing. In this research, we propose texture analysis of the brain and genomic analysis to detect Alzheimer’s disease. 3D MRI images were chosen to analyze the texture of the brain, and microarray data were chosen to analyze gene expression. We classified Alzheimer’s disease into three types: Alzheimer’s, Mild Cognitive Impairment (MCI), and Normal. In this study, texture analysis was carried out by using the Advanced Local Binary Pattern (ALBP) and the Gray Level Co-occurrence Matrix (GLCM). We also propose the bi-clustering method to analyze microarray data. The experimental results from texture analysis show that ALBP had better performance than GLCM in classification of Alzheimer’s disease. The ALBP method achieved an average value of accuracy of between 75% - 100% for binary classification of the whole brain data. Furthermore, Biclustering method with microarray data shows good performance gene expression, where this information show influence Alzheimer’s disease with total of bi-cluster is 6.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
111--120
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Indonesia Kampus UI Depok, Indonesia 16424
autor
- Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Indonesia Kampus UI Depok, Indonesia 16424
autor
- Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Indonesia Kampus UI Depok, Indonesia 16424
Bibliografia
- [1] Zhou X, Liu Z, Zhou Z, Xia H: Study on Texture Characteristics of Hippocampus in MR Images of Patients with Alzheimer’s Disease. Proc. 3rd Annu. Conf. Biomedical Engineering and Informatics 2010, Yantai, Beijing.
- [2] Kassner A and Thornhill R.E: Texture Analysis: A Review of Neurologic MR Imaging Application. American Journal of Neuroradiology 2010, 31: 809-816.
- [3] X. Li, H. Xia, Z. Zhuo, L. Thong, 3D Texture Analysis of Hippocampus Based on MR Images in Patients with Alzheimer Disease, and Mild Cognitive Impairment,” in International Conference on Biomedical Engineering and Informatics, Beijing, 2010.
- [4] J. Zhang J, Y. Chunsui , and Gui Lian J, 3D texture analysis on MRI images of Alzheimer’s disease, Brain Imaging and Behavior, vol. 6, pp. 61-69, 2012.
- [5] Rajeesh J, S.M. Rama, Palinikumar S, Gopalakhrisnan T: Discrimination of Alzheimer’s disease using hippocampus texture features from MRI. Journal Asian Biomedicine 2012, 6: 87-94.
- [6] Xia H, Tong L, Zhou X, Zhang J: Texture Analysis and Volumetry of Hippocampus and Medial Temporal Lobe in Patients with Alzheimer’s Disease. In International Conference on Biomedical Engineering 2012, Macau, Macao.
- [7] Simoes R, Slump C, Marie A: Using local texture maps of brain MR images to detect Mild Cognitive Impairment. 21st International Conference on Pattern Recognition 2012, Japan
- [8] P. Morgado, M. Silveira, and J.S. Marques, J. Computer Methods in Biomechanics and Biomedical Engineering: , 183 (2013)
- [9] Ojala T: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Journal IEEE Transaction on Pattern Analysis and Machine Intelligence 2002, 24: 971-987.
- [10] Pietikainen M, Zhao G, Hadid A, Ahonen T: Local Binary Patterns for Still Images. Computer Vision Using Local Binary Patterns. London: Springer ; 2011 13-37.
- [11] Guo Z, Liu Z , D Zhang: A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Transactions on Image Processing 2010, 19: 1657-1663.
- [12] Unay D, Ekin A, Cetin M, Jasinchi R, Erchil A: Robustness of Local Binary Patterns in Brain MRI Analysis. in Proc. 29th Ann. Conference of the IEEE EMBS 2007, Lyon.
- [13] D. Sarwinda and A. Bustamam, Detection of Alzheimer’s disease using advanced local binary pattern from hippocampus and whole brain of MR images, 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 2016, pp. 5051-5056
- [14] T. Ojala, Multiresolution gray-scale, and rotation invariant texture classification with local binary patterns, Pattern Analysis and Machine Intelligence, vol. 24, pp. 971-987, 2002.
- [15] A. C. Rencher, Editor, Methods of Multivariate Analysis, 2nd ed, John Willey & Sons Publishers, anada, 2002.
- [16] T. Ahonen, J. Matas, C. He, and M. Pietikainen, Editors. Proceedings of the 16th Annual Scandinavian Conference on Image Analysis, (2009) June 15-18; Oslo, Norway.
- [17] Nanni L, Lumini A, Brahnam S: Local Binary Pattern Variants as Texture Descriptors for Medical Image Analysis. Artificial Intelligence in Medicine 2010, 49: 117-125.
- [18] Association A: 2012 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association2012, 8:131-168.
- [19] Ojala T, Pietikinen M, and Menp T: A comparative study of texture measures with classification based on featured distributions. Journal Pattern Recognition 1996, 29: 51-59.
- [20] Ahonen T, Matas J, He C, Pietikainen M: Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. Proc. 16th Annual Scandinavian Conference on Image Analysis 2009, Norway.
- [21] M. Das, B. Borah. Biclustering of Gene Expression Data Using Two-Phase Method. International Journal of Computer Applications Vol. 103 No. 13. 2014.
- [22] H. Turner, T. Bailey, W. Krzanowski. Improved Biclustering of Microarray Data Demonstrated through Systematic Performance Tests. Elseiver. Computational Statistics & Data Analysis, pp. 235 – 254. 2005.
- [23] T. Kanungo, D. Mount, N. Netanyahu, et al. An Efficient K-Means Clustering Algorithm: Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 24 (7), pp. 881– 892. 2002.
- [24] A. Bustamam, G. Ardaneswari, D. Lestari, H. Tasman. Performance Evaluation of Fast Smith-Waterman Algorithm for Sequence Database Searches using CUDA GPU-Based Parallel Computing. Journal of Next Generation Information Technology Vol. 5 No. 2, pp. 38 – 46. 2014.
- [25] K.S. Pollard, M.J. Van de Laan. Statistical Inference for Simultaneous Clustering of Gene Expression Data. Math Biosci, 176, pp. 99 – 121. 2002.
- [26] S.C. Mdaeira, A.L. Oliveira. Biclustering Algorithms for Biological Data Analysis: A Survey. EEE/ACM Transactions on Computational Biology and Bioinformatics, 1, pp. 24 – 45. 2004.
- [27] L. Lazzeroni, A. Owen. Plaid Models for Gene Expression Data. Statistica Sinica 12, pp. 61 – 86. 2002.
- [28] J.A. Hartingan. Clustering Algorithm. New York: John Willey and Sons, Inc. 1997.
- [29] Zhang D, Wang Y, Zhuo L, Yuan H, Shen D: Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. Journal Neuroimage 2011, 5: 856-867.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-528bcdc4-d39b-4556-af95-5f532c0c37ac