PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage Investigation of a Stork Wärtsilä 6SW280 Engine Valve Exhaust – A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The loss of steerage in maritime vessels often stems from main engine failures, as expounded in the present article. The focal incident involves a cascading engine breakdown initiated by a single exhaust valve fault. Subsequent consequences encompass the fragmentation of the second exhaust valve, structural damage to the engine components, including the head and piston, cracking of valve seats, and the inadvertent entry of cooling water into a cylinder. The ensuing plastic strain on the cylinder surface, coupled with valve fragments infiltrating the turbocharger, leads to additional, albeit minor, damage. Notably, the high degree of plastic strain obfuscates the original features of the cracked elements, necessitating the author to delineate a hypothetical cause and progression of the destruction process. In the article's conclusive remarks, the author underscores the paramount importance of continuous engine operation monitoring and meticulous fault diagnosis to uphold the safety standards of maritime transport.
Słowa kluczowe
Twórcy
  • West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Vukelić G, Vizentin G, Common Case Studies of Marine Structural Failures. In book: Failure Analysis and Prevention, Chapter 9, IntechOpen, London, UK, 2017. DOI: 10.5772/intechopen.72789.
  • 2. Balyts’kyi O I, Kawiak M, Kawiak P, Assessment of the Fatigue Damage to the Propeller Shaft in a Sea Water. Materials Science 2013, 49(1), 130–133. DOI: 10.1007/s11003-013-9592-4.
  • 3. Raghuwanshi N K, Pandey A, Mandloi R K, Failure Analysis of Internal Combustion Engine Valves. International Journal of Innovative Research in Science, Engineering and Technology 2012, 1(2), 173–181.
  • 4. Yu Z W, Xu X L, Failure Analysis on Diesel-Engine Valve Springs. Journal of Failure Analysis and Prevention 2009, 9(4), 329–334. DOI: 10.1007/s11668-009-9247-9.
  • 5. Vardar V, Ekerin A, Investigation of Exhaust Valve Failure in Heavy-duty diesel Engine. Gazi University Journal of Science 2010, 23(4), 493–499. https://dergipark.org.tr/en/download/article-file/83408.
  • 6. Kwon O G, Han M S, Analysis of Failure of the Exhaust Valve Stem from the Waukesha P9390 GSI Gas Engine. Engineering Failure Analysis 2004, 11(3), 439–447. https://doi.org/10.1016/j.engfailanal.2003.05.015.
  • 7. Smoleńska H, Kończewicz W, Failure Analysis of the Exhaust Valve Face in Diesel Marine Engine. Advanced Materials Science 2010, 10(2), 12–18. DOI: 10.2478/v10077-010-0006-0.
  • 8. Zhao Y C, Yan H Z, Experimental study on wear failure course of gas-valve/valve-seat in engine. Journal of Central South University of Technology 2005, 12(1), 243–246. https://doi.org/10.1007/s11771-005-0407-0.
  • 9. Ashouri H, Beheshti B, Ebrahimzadeh M R, Analysis of Fatigue Cracks of Cylinder Heads in Diesel Engines. Journal of Theoretical and Applied Mechanics 2016, 54(2), 369–383. https://doi.org/10.15632/jtam-pl.54.2.369.
  • 10. Witkowski K, The status of the marine diesel engines technical diagnostic. Diagnostyka 2005, 34, 85–92
  • 11. Jafari S M, Mehdigholi H, Behzad M, Valve Fault Diagnosis in Internal Combustion Engines Using Acoustic Emission and Artificial Neural Network. Shock and Vibration 2014, 823514. https://doi.org/10.1155/2014/823514.
  • 12. Lowe D P, Characterisation of Combustion Related Acoustic Emission Sources for Diesel Engine Condition Monitoring. PhD Dissertation, Faculty of Science and Engineering, Queensland University of Technology, Australia 2013. https://eprints.qut.edu.au/62454/13. Balyts’kyi O I, Abramek K F, Diagnostic parameters of wear of a piston-bush-cylinder system. Materials Science 2013, 49(2), 234–236. https://doi.org/10.1007/s11003-013-9604-4.
  • 14. Balyts’kyi O I, Abramek K F, Stoeck T, Osipowicz T, Diagnostics of Degradation of the Lock of a Sealing Ring According to the Loss of Working Gases of an Internal Combustion Engine. Materials Science 2014, 50(1), 156–159. https://doi.org/10.1007/s11003-014-9704-9.
  • 15. Balyts’kyi O I, Abramek K F, Mrozik M, Stoeck T, Osipowicz T, Evaluation of the Losses of HydrogenContaining Gases in the Process of Wear of Pistons of an Internal-Combustion Engine. Materials Science 2017, 53(2), 289–294. https://doi.org/10.1007/s11003-017-0074-y.
  • 16. Ibrion M., Paltrinieri N., Nejad A.R. Learning from failures in cruise ship industry: The blackout of Viking Sky in Hustadvika, Norway. Engineering Failure Analysis 2021, 125, 105355. https://doi.org/10.1016/j.engfailanal.2021.105355.
  • 17. Moon H., Choi J. Hierarchical spline for time series prediction: An application to naval ship engine failure rate. Applied AI Letters 2021, 2(1), e22. https://doi.org/10.1002/ail2.22.
  • 18. Chybowski L., Wiaterek D., Jakubowski A. The impact of marine engine component failures upon an explosion in the starting air manifold. Journal of Marine Science and Engineering 2022, 10(12), 1850. https://doi.org/10.3390/jmse10121850.
  • 19. Kirolivanos G L., Jeong B. Comparative reliability analysis and enhancement of marine dual-fuel engines. Journal of International Maritime Safety, Environmental Affairs, and Shipping 2022, 6(1), 1–23. https://doi.org/10.1080/25725084.2021.1968663.
  • 20. Valdez B., Ramirez J., Eliezer A., Schorr M., Ramos R., Salinas R. Corrosion assessment of infrastructure assets in coastal seas. Journal of Marine Engineering & Technology 2016, 15(3), 124–134. DOI:10.1080/20464177.2016.1247635.
  • 21. Vizentin G., Vukelic G., Murawski L., Recho N., Orovic J. Marine propulsion system failures—A Review. J. Mar. Sci. Eng. 2020, 8(9), 662. doi:10.3390/jmse8090662.
  • 22. Hazra M., Rao A.S, Singh A.K. Corrosion fatigue failure of exhaust valve of a diesel generator. Journal of Failure Analysis and Prevention 2023, 23, 1402–1412. https://doi.org/10.1007/s11668-023-01663-2.
  • 23. Forsberg P. Combustion valve wear: A tribological study of combustion valve sealing interfaces. Acta Universitatis Upsaliensis, 2013. (Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology). Available from: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-204636.
  • 24. Vera-Cardenas E., Lewis R., Slatter T. Sensitivity study of a valve recession model. Open Journal of Applied Sciences 2017, 7, 50–56. doi: 10.4236/ojapps.2017.72005.
  • 25. Blau P.J. A wear model for diesel engine exhaust valves. Report ORNL/TM-2009/259, Oak Ridge National Laboratory, Tennessee, USA 2009, https://doi.org/10.2172/1039217.
  • 26. Smoleńska H., Kończewicz W., Bazychowska S. The impact of material selection on durability of exhaust valve faces of a ship engine – A Case Study. Advances in Science and Technology Research Journal 2020, 14(3), 165–174, https://doi.org/10.12913/22998624/124074.
  • 27. Bałon P., Świątoniowski A., Rejman E., Kiełbasa B., Smusz R., Szostak J., Kowalski Ł. Stress concentration analysis of the injection pump shaft. Advances in Science and Technology Research Journal 2020, 14(2), 155–62. https://doi.org/10.12913/22998624/118945.
  • 28. Niemczewska-Wójcik M., Madej M. Surface topography and tribological properties of cutting tool coatings. Advances in Science and Technology Research Journal 2023, 17(6), 39–48. https://doi.org/10.12913/22998624/173214.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52883e04-7cd6-4d8b-8c14-3945ae965067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.