PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Economic analysis of artificially roughened solar air heater with v-shaped ribs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the minimal transfer of heat from absorber plate to moving air in the duct, solar air heaters have low performance. One of the procedures to augment the heat transfer by substantial amount is by utilizing artificial roughness, by which the performance can be improved considerably. In this study, an economic investigation of solar air heater embedded with artificial roughness is accomplished numerically employing v-shaped roughness, with the objective of optimising life cycle solar savings. The non-dimensional parameters of roughness, namely, angle of attack (α), roughness pitch (p/e) and roughness height (e/Dh) are examined by varying temperature rise over the solar air heater (∆T) and solar radiations (I) for different economic parameters values i.e., cost of collector, cost of roughness elements, and cost of conventional fuel.
Twórcy
  • Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, 248007, India
  • Department of Mechanical Engineering, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand, 246194, India
  • Department of Mechanical Engineering, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand, 246194, India
autor
  • Department of Mechanical Engineering, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand, 246194, India
  • Department of Mechanical Engineering, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand, 246194, India
  • Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, 248007, India
Bibliografia
  • [1] K. Prasad, S.C. Mullick, Heat transfer characteristics of a solar air heater used for drying purposes, Appl. Energy. 13 (1983) 83–93. https://doi.org/10.1016/0306-2619(83)90001-6.
  • [2] A.M. Ebrahim Momin, J.S. Saini, S.C. Solanki, Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate, Int. J. Heat Mass Transf. 45 (2002) 3383–3396. https://doi.org/10.1016/S0017-9310(02)00046-7.
  • [3] V.S. Hans, R.P. Saini, J.S. Saini, Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs, Sol. Energy. 84 (2010) 898–911. https://doi.org/10.1016/j.solener.2010.02.004.
  • [4] S. Chamoli, N.S. Thakur, Heat transfer enhancement in solar air heater with V-shaped perforated baffles, J. Renew. Sustain. Energy. 5 (2013) 023122. https://doi.org/10.1063/1.4798411.
  • [5] V.B. Gawande, A.S. Dhoble, D.B. Zodpe, S. Chamoli, Experimental and CFD-based thermal performance prediction of solar air heater provided with chamfered square rib as artificial roughness, J. Brazilian Soc. Mech. Sci. Eng. 38 (2016) 643–663. https://doi.org/10.1007/s40430-015-0402-9.
  • [6] R. Maithani, J.S. Saini, Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with V-ribs with symmetrical gaps, Exp. Therm. Fluid Sci. 70 (2016) 220–227. https://doi.org/10.1016/j.expthermflusci.2015.09.010.
  • [7] R. Nadda, A. Kumar, R. Maithani, Developing heat transfer and friction loss in an impingement jets solar air heater with multiple arc protrusion obstacles, Sol. Energy. 158 (2017) 117–131. https://doi.org/10.1016/j.solener.2017.09.042.
  • [8] V. Singh Bisht, A. Kumar Patil, A. Gupta, Review and performance evaluation of roughened solar air heaters, Renew. Sustain. Energy Rev. 81 (2018) 954–977. https://doi.org/10.1016/j.rser.2017.08.036.
  • [9] I. Singh, S. Singh, CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements, Sol. Energy. 162 (2018) 442–453. https://doi.org/10.1016/j.solener.2018.01.019.
  • [10] S. Chamoli, R. Lu, D. Xu, P. Yu, Thermal performance improvement of a solar air heater fitted with winglet vortex generators, Sol. Energy. 159 (2018) 966–983. https://doi.org/10.1016/j.solener.2017.11.046.
  • [11] R. Maithani, A. Kumar, P. Gholamali Zadeh, M.R. Safaei, E. Gholamalizadeh, Empirical correlations development for heat transfer and friction factor of a solar rectangular air passage with spherical-shaped turbulence promoters, J. Therm. Anal. Calorim. 139 (2020) 1195–1212. https://doi.org/10.1007/s10973-019-08551-8.
  • [12] R. Bahuguna, K.K.S. Mer, M. Kumar, S. Chamoli, Thermohydraulic performance and second law analysis of a tube embedded with multiple helical tape inserts, Energy Sources, Part A Recover. Util. Environ. Eff. (2021) 1–23. https://doi.org/10.1080/15567036.2021.1904057.
  • [13] S. Paneliya, S. Khanna, V. Mankad, A. Ray, P. Prajapati, I. Mukhopadhyay, Comparative study of heat transfer characteristics of a tube equipped with X-shaped and twisted tape insert, Mater. Today Proc. 28 (2019) 1175–1180. https://doi.org/10.1016/j.matpr.2020.01.103.
  • [14] R. Bahuguna, K.K.S. Mer, M. Kumar, S. Chamoli, Entropy generation analysis in a tube heat exchanger integrated with triple blade vortex generator inserts, Energy Sources, Part A Recover. Util. Environ. Eff. (2021) 1–19. https://doi.org/10.1080/15567036.2021.1918291.
  • [15] R. Kumar, P. Chandra, Thermal analysis, pressure drop and exergy loss of energy efficient shell, and triple meshed helical coil tube heat exchanger, Energy Sources, Part A Recover. Util. Environ. Eff. 42 (2020) 1026–1039. https://doi.org/10.1080/15567036.2019.1602213.
  • [16] V.S. Bisht, A.K. Patil, A. Gupta, Thermo-Hydraulic Performance of Solar Air Heater Roughened with V- haped Ribs Combined with V-Shaped Perforated Baffles, Adv. Energy Res. 2 (2020) 123–132. https://doi.org/10.1007/978-981-15-2662-6_12.
  • [17] H.U. Choi, K.H. Choi, CFD analysis on the heat transfer and fluid flow of solar air heater having transverse triangular block at the bottom of air Duct, Energies. 13 (2020) 1099. https://doi.org/10.3390/en13051099.
  • [18] H.K. Ghritlahre, P.K. Sahu, A comprehensive review on energy and exergy analysis of solar air heaters, Arch. Thermodyn. 41 (2020) 183–222. https://doi.org/10.24425/ather.2020.134577.
  • [19] H. Singh, H. Singh, R. Bahuguna, C. Kishore, CFD analysis of heat transfer characteristics of rectangular solar air heater with kite shaped roughness, Mater. Today Proc. 52 (2022) 2014–2025. https://doi.org/10.1016/j.matpr.2021.12.008.
  • [20] L.N. Azadani, N. Gharouni, Multi objective optimization of cylindrical shape roughness parameters in a solar air heater, Renew. Energy. 179 (2021) 1156–1168. https://doi.org/10.1016/j.renene.2021.07.084.
  • [21] A. Haldar, L. Varshney, P. Verma, Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD, Renew. Energy. 184 (2022) 266–279. https://doi.org/10.1016/j.renene.2021.11.088.
  • [22] A. Malhotra, H.P. Garg, A. Patil, Heat loss calculation of flat plate solar collectors, J. Therm. Eng. 2 (1981) 59–62.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-528347fc-32d4-4c85-a1c2-e98ab27cdbd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.