PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reconstruction of geomagnetic event as observed in Northern Adriatic region and Its correlation with GPS single-frequency positioning deviations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Space weather effects are generally recognized as causes of degradation of satellite positioning, navigation and timing (PNT) services. We analyze GPS position estimation error during a geomagnetic storm, focusing on manifestations of geomagnetic processes. The position estimation error was analyzed in terms of GPS coordinates’ deviations (latitude, longitude and height) from their reference values. The storm’s impact was studied in the Northern Adriatic region where GPS observables from two Global Navigation Satellite System (GNSS) reference stations were analysed. Geomagnetic indices were elaborated, comprising readings from interplanetary, magnetospheric and geomagnetic observatories. Total Electron Content (TEC) on both stations was computed using dual frequency GPS pseudorange observables. The experiment was to reconstruct the movement of geomagnetic disturbances entering the geospace, reaching the earth’s surface. The aim was to correlate possible space weather manifestation on satellite positioning performance in terms of positioning error. Regularities in changes in positioning deviations were identified with relation to influential indices. The research offered a possibility of experimental positioning deviations assessment as well as forecasting. Evaluation of generated rudimentary Classification and Regression Trees (CART) models showed that the risk of satellite positioning errors could be assessed and predicted considering absolutes, as well as changes in values of geomagnetic indices. During the research process, several activities emerged as preferable continuation of the work, with the aim of further development of predictive models and the complement of space weather scenarios and their consequences on navigational systems. Along with summarized results, they are outlined in the conclusion section.
Twórcy
autor
  • University of Rijeka, Rijeka, Croatia
autor
  • University of Rijeka, Rijeka, Croatia
autor
  • University of Rijeka, Rijeka, Croatia
Bibliografia
  • 1. Booker, H.G., Morphology of Ionospheric Storms, Proceedings of the National Academy of Science of the United States of America, PNAS, Washington DC, 1954, vol. 40, no. 10, pp. 931–943
  • 2. Brčić, D., Ensuring sustainability through utilisation of satellite navigation technology, Proceedings of the 2012 International Conference on Transport Sciences (ICTS); Portoroz, Slovenia, Fakulteta za pomorstvo in promet, 2012, p 14.
  • 3. Davies, K., Ionospheric Radio Propagation, National Bureau of Standards, Washington DC, 1965.
  • 4. Dyrud, L. et al., Ionospheric measurement with GPS: Receiver techniques and methods. Radio Science, 2008, vol. 43, no. 6, pp. 1-11.
  • 5. Filić, M. and Filjar, R., Forecasting model of space weatherdriven GNSS positioning performance. Lambert Academic Publishing, Saarbrucken, 2018
  • 6. Filjar, R., Brčić, D. and Kos, S., Single-frequency Horizontal GPS Positioning Error response to a moderate Ionospheric storm over Northern Adriatic, In: Weintrit, A. (ed) Advances in Marine Navigation, Marine Navigation and Safety of Sea Transportation, CRC Press, Boca Raton, 2013, pp. 49-56
  • 7. Goodman, J.M., Space Weather and Telecommunications, Springer, New York, 2005.
  • 8. Gurtner, W. and Estey, L., RINEX: The Receiver Independent Exchange Format, V3.01, IGS Central Bureau, Pasadena, 2009, p. 44
  • 9. Hastie. T., Tibshirani, R. and Friedman, J., The Elements of Statistical Learning, Springer, New York, 2009.
  • 10. James, G., Witten, D., Hastie, T. and Tibshirani, R., An Introduction to Statistical Learning, Springer, New York, 2009.
  • 11. Kaplan, E.D. and Hegarty, C.J., Understanding GPS: Principles and Application, 2nd ed., Artech House, Boston, 2006.
  • 12. Kintner, P.M. and Ledvina, B., The ionosphere, radio navigation and global navigation satellite systems, Advances in Space Research, 2005, vol 35, no. 5, pp. 788811.
  • 13. Klobuchar, J.A., Ionospheric corrections for timing applications, Proceedings of the 20th Annual Precise Time and Time Interval (PTTI) Application and Planning Meeting, Naval Observatory, Washington DC, 1988, pp. 193-201
  • 14. Klobuchar, J.A., Ionospheric Effects on Earth-Space Propagation, Environmental research paper No. 866, Air Force Geophysics Laboratory, Hanscom, 1983, p 33.
  • 15. Klobuchar, J.A., Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users, IEEE Transactions on Aerospace and Electronic Systems, 1987, vol. 23, no.3, pp. 325–331.
  • 16. Kouba, J.A., Guide to using International GNSS Service (IGS) products, IGS Central Bureau, Pasadena, 2009, p. 34
  • 17. Lockwood, M., Wild, M.N., Stamper, R., Davis, C.J. and Grande, M., Predicting Solar Disturbance Effects on Navigation Systems, Journal of Navigation, 1999, vol. 52, no. 2, pp. 203-216
  • 18. McMorrow, D., Impacts of Severe Space Weather on the Electric Grid, Report JSR-11-320, The MITRE Corporation, McLean, 2011, p. 107
  • 19. Mendillo, M., Storms in the ionosphere: Patterns and processes for total electron content, Reviews of Geophysics, 2006, vol. 44, no. 4, p. 47.
  • 20. Noll, C., The Crustal Dynamics Data Information System: A resource to support scientific analysis using space geodesy, Advances in Space Research, 2010, vol. 45, no. 12, pp. 1421-1440.
  • 21. Parkinson, B.W. and Spilker, Jr. J.J., Global Positioning System: Theory and Applications, Vol. I, AIAA, Washington DC, 1996.
  • 22. Perrone, L. and De Franceschi, G., Solar, ionospheric and geomagnetic indices, Annals of Geophysics, 1998, vol. 41, no. 5-6, pp. 843-855.
  • 23. Ross, W.J., The determination of ionospheric electron content from satellite Doppler measurements: 2, Experimental results, Journal of Geophysical Research, 1960, vol. 65, pp. 2607–2615
  • 24. Singer, H.J., Matheson, L., Grubb, R., Newman, A. and Bouwer, S.D., Monitoring space weather with the GOES magnetometers, Proc. SPIE 2812, GOES-8 and Beyond, 1996, p. 29.
  • 25. Subirana, J. S., Zornoza, J. M. J. and Hernandez-Pajares, M., GNSS Data processing, Volume I: Fundamentals and algorithms, ESA Communications, Noordwijk, 2013.
  • 27. Thomas, M. et al., Global Navigation Space Systems: reliance and vulnerabilities, RAENG, London, 2011.
  • 28. Zolesi, B. and Cander, R. L. J, Ionospheric Prediction and Forecasting, Springer, New York, 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5281b52a-ac36-4caa-93bd-792656a7e7b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.