PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Percutaneous double lumen cannula for right ventricle assist device system: A computational fluid dynamics study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: Our goal is to develop a double lumen cannula (DLC) for a percutaneous right ventricular assist device (pRVAD) in order to eliminate two open chest surgeries for RVAD installation and removal. The objective of this study was to evaluate the performance, flow pattern, blood hemolysis, and thrombosis potential of the pRVAD DLC. Methods: Computational fluid dynamics (CFD), using the finite volume method, was performed on the pRVAD DLC. For Reynolds numbers <4000, the laminar model was used to describe the blood flow behavior, while shear-stress transport k-ω model was used for Reynolds numbers >4000. Bench testing with a 27 Fr prototype was performed to validate the CFD calculations. Results: There was <1.3% difference between the CFD and experimental pressure drop results. The Lagrangian approach revealed a low index of hemolysis (0.012% in drainage lumen and 0.0073% in infusion lumen) at 5 l/min flow rate. Blood stagnancy and recirculation regions were found in the CFD analysis, indicating a potential risk for thrombosis. Conclusions: The pRVAD DLC can handle up to 5 l/min flow with limited potential hemolysis. Further modification of the pRVAD DLC is needed to address blood stagnancy and recirculation.
Twórcy
autor
  • Department of Surgery, University of Kentucky, College of Medicine, 800 Rose Street, MN317, Lexington, KY 40536-0298, USA
autor
  • Department of Surgery, Cardiothoracic Surgery Division, University of Kentucky, USA
autor
  • Bioengineering Unit, Magna Graecia University, Catanzaro, Italy
autor
  • Department of Chemical and Materials Engineering, University of Kentucky, USA
autor
  • W-Z Biotech, LLC, USA
autor
  • Department of Surgery, Cardiothoracic Surgery Division, University of Kentucky, USA
  • Department of Surgery, Cardiothoracic Surgery Division, University of Kentucky, USA
  • Department of Surgery, Cardiothoracic Surgery Division, University of Kentucky, USA
Bibliografia
  • [1] Fitzpatrick JR, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 2008;27:1286–92.
  • [2] Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant 2006;25:1–6.
  • [3] Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 2008;51:2163–72.
  • [4] Kavarana MN, Pessin-Minsley MS, Urtecho J, Catanese KA, Flannery M, Oz MC, et al. Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg 2002;73:745–50.
  • [5] Ochiai Y, McCarthy PM, Smedira NG, Banbury MK, Navia JL, Feng J, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation 2002;106:I198–202.
  • [6] Atiemo AD, Conte JV, Heldman AW. Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter Cardiovasc Interv 2006;68:78–82.
  • [7] Kiernan MS, Krishnamurthy B, Kapur NK. Percutaneous right ventricular assist via the internal jugular vein in cardiogenic shock complicating an acute inferior myocardial infarction. J Invasive Cardiol 2010;22:E23–6.
  • [8] Mathison M, Buffolo E, Jatene AD, Jatene FB, Reichenspurner H, Matheny RG, et al. Right heart circulatory support facilities coronary artery bypass without cardiopulmonary bypass. Ann Thorac Surg 2000;70:1083–5.
  • [9] Wirtz SP, Schmidt C, Van Aken H, Brodner G, Hammel D, Scheld HH, et al. Temporary right heart support with percutaneous jugular access. Ann Thorac Surg 2006;81:701–5.
  • [10] Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant 2015;34:1549–60.
  • [11] Cheung AW, White CW, Davis MK, Freed DH. Short-term mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J Heart Lung Transplant 2014;33:794–9.
  • [12] Bermudez CA, Rocha RV, Sappington PL, Toyoda Y, Murray HN, Boujoukos AJ. Initial experience with single cannulation for venovenous extracorporeal oxygenation in adults. Ann Thorac Surg 2010;90:991–5.
  • [13] Wang D, Zhou X, Liu X, Sidor B, Lynch J, Zwischenberger JB. Wang-Zwische double lumen cannula-toward a percutaneous and ambulatory paracorporeal artificial lung. ASAIO J 2008;54:606–11. http://dx.doi.org/10.1097/MAT.0b013e31818c69ab.
  • [14] Fluent user's guide version 6.3. NH: Ansys Fluent Inc.; 2006.
  • [15] Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 2011;33:263–80.
  • [16] Fraser KH, Zhang T, Taskin ME, Griffith BP, Wu ZJ. Computational fluid dynamics analysis of thrombosis potential in left ventricular assist device drainage cannulae. ASAIO J 2010;56:157–63.
  • [17] Jones CC, Capasso P, McDonough JM, Wang D, Rosenstein KS, Zwischenberger JB. Biplane angiography for experimental validation of computational fluid dynamic models of blood flow in artificial lungs. ASAIO J 2013;59:397–404.
  • [18] Grigioni M, Daniele C, Morbiducci U, D'Avenio G, Di Benedetto G, Del Gaudio C, et al. Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow. J Biomech 2002;35:1599–612.
  • [19] Dasi LP, Simon HA, Sucosky P, Yoganathan AP. Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 2009;36:225–37.
  • [20] Song X, Throckmorton AL, Wood HG, Antaki JF, Olsen DB. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 2003;27:938–41.
  • [21] Bludszuweit C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 1995;19:590–6.
  • [22] Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology 1980;17:17–24.
  • [23] Neidlin M, Jansen S, Moritz A, Steinseifer U, Kaufmann TS. Design modifications and computational fluid dynamic analysis of an outflow cannula for cardiopulmonary bypass. Ann Biomed Eng 2014;1–10.
  • [24] Hochareon P, Manning KB, Fontaine AA, Tarbell JM, Deutsch S. Correlation of in vivo clot deposition with the flow characteristics in the 50 cc penn state artificial heart: a preliminary study. ASAIO J 2004;50:537–42.
  • [25] Sutera SP, Croce PA, Mehrjardi M. Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear flow. Trans Am Soc Artif Intern Organs 1972;18:335–41. 47.
  • [26] Zhang T, Taskin ME, Fang H-B, Pampori A, Jarvik R, Griffith BP, et al. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif Organs 2011;35:1180–6.
  • [27] Liu G-M, Chen H-B, Luo F-L, Zhang Y, Sun H-S, Zhou J-Y, et al. Numerical simulation of LVAD inflow cannulas with different tip. Int J Chem Eng 2012;2012:8.
  • [28] Wang D, Zwischenberger JB. Single expandable double lumen cannula assembly for veno-venous ECMO. In: USPTO, editor. USPTO. USA: The University of Texas System; 2009.
  • [29] Zhou X, Wang D, Sumpter R, Pattison G, Ballard-Croft C, Zwischenberger JB. Long-term support with an ambulatory percutaneous paracorporeal artificial lung. J Heart Lung Transplant 2012;31:648–54.
  • [30] Reeb J, Falcoz PE, Santelmo N, Massard G. Double lumen bi-cava cannula for veno-venous extracorporeal membrane oxygenation as bridge to lung transplantation in non-intubated patient. Interact Cardiovasc Thorac Surg 2012;14:125–7.
  • [31] Hoopes CW, Kukreja J, Golden J, Davenport DL, Diaz- Guzman E, Zwischenberger JB. Extracorporeal membrane oxygenation as a bridge to pulmonary transplantation. J Thorac Cardiovasc Surg 2013;145:862–8.
  • [32] Gelvin MG, Conte JV, Rivard DC. Use of A-Med Paraflow System for right heart support after heart transplantation. ASAIO J 2004;50:522–3.
  • [33] Caputo M, Yeatman M, Narayan P, Marchetto G, Ascione R, Reeves BC, et al. Effect of off-pump coronary surgery with right ventricular assist device on organ function and inflammatory response: a randomized controlled trial. Ann Thorac Surg 2002;74:2088–95. discussion 95-6.
  • [34] Livi U, Gelsomino S, Da Col P, Poldini F, Masullo G, Cheli G, et al. The A-Med right heart support for off-pump coronary artery bypass grafting. Ital Heart J 2001;2:502–6.
  • [35] Toomasian JM, Aboul-Hosn W. Coronary artery bypass grafting using a miniature right ventricular support system. Perfusion 2000;15:521–6.
  • [36] Aggarwal V, Einhorn BN, Cohen HA. Current status of percutaneous right ventricular assist devices: first-in-man use of a novel dual lumen cannula. Catheter Cardiovasc Interv 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-527b4978-f218-4078-8bc6-38411eff9a8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.