PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The One-Third-Trick and Shift Operators

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We obtain a representation as martingale transform operators for the rearrangement and shift operators introduced by T. Figiel. The martingale transforms and the underlying sigma algebras are obtained explicitly by combinatorial means. The known norm estimates for those operators are a direct consequence of our representation.
Rocznik
Strony
219--238
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Institute of Analysis Johannes Kepler University Linz Altenbergerstrasse 69 A-4040 Linz, Austria
Bibliografia
  • [Bou86] J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, in: Probability Theory and Harmonic Analysis (Cleveland, OH, 1983), Monogr.
  • Textbooks Pure Appl. Math. 98, Dekker, 1986, 1–19.
  • [Bur81] D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997–1011.
  • [CWW85] S. Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217–246.
  • [Dav80] B. Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), 211–233.
  • [Fig88] T. Figiel, On equivalence of some bases to the Haar system in spaces of vectorvalued functions, Bull. Polish Acad. Sci. 36 (1988), 119–131.
  • [Fig90] T. Figiel, Singular integral operators: A martingale approach, in: Geometry of Banach Spaces, London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 95–110.
  • [FW01] T. Figiel and P. Wojtaszczyk, Special bases in function spaces, in: Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 561–597.
  • [GJ82] J. B. Garnett and P. W. Jones, BMO from dyadic BMO, Pacific J. Math. 99 (1982), 351–371.
  • [Hyt12] T. P. Hytönen, Vector-valued singular integrals revisited—with random dyadic cubes, Bull. Polish Acad. Sci. Math. 60 (2012), 269–283.
  • [Kah85] J.-P. Kahane, Some Random Series of Functions, 2nd ed., Cambridge Univ. Press, 1985.
  • [Lec11] R. Lechner, An interpolatory estimate and shift operators, Ph.D. thesis, 2011; http://shrimp.bayou.uni-linz.ac.at/Papers/dvi/phd_thesis_Richard_Lechner.pdf.
  • [MP12] P. F. X. Müller and M. Passenbrunner, A decomposition theorem for singular integral operators on spaces of homogeneous type, J. Funct. Anal. 262 (2012), 1427–1465.
  • [Mül05] P. F. X. Müller, Isomorphisms between H1 spaces, IMPAN Monografie Mat. 66, Birkhäuser, Basel, 2005.
  • [NS97] I. Novikov and E. Semenov, Haar Series and Linear Operators, Kluwer, 1997.
  • [NTV97] F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Notices 15 (1997), 703–726.
  • [NTV03] F. Nazarov, S. Treil and A. Volberg, The T b-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151–239.
  • [Ste70] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Ann. of Math. Stud. 63, Princeton Univ. Press, Princeton, NJ, 1970.
  • [Wol82] T. H. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), 321–328.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52782133-69be-4d10-8455-aa2a407c9225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.