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Abstract. We consider the classical solutions of mixed problems for infinite, countable
systems of parabolic functional differential equations. Difference methods of two types are
constructed and convergence theorems are proved. In the first type, we approximate the exact
solutions by solutions of infinite difference systems. Methods of second type are truncation of
the infinite difference system, so that the resulting difference problem is finite and practically
solvable. The proof of stability is based on a comparison technique with nonlinear estimates
of the Perron type for the given functions. The comparison system is infinite. Parabolic
problems with deviated variables and integro-differential problems can be obtained from the
general model by specifying the given operators.
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1. INTRODUCTION

During this time numerous papers concerned problems for infinite systems of parabolic
functional differential equations were published. The exposition of existence results for
such problems can be found in the monograph [1], see also [9] and [4]. The papers [2,11,
12] contain uniqueness criteria for infinite parabolic problems. Various applications
of infinite systems of parabolic integral differential equations, such as the discrete
coagulation fragmentation model [13], are listed in [1].

We are interested in establishing numerical discretization methods for solving
infinite systems of parabolic functional differential equations with initial boundary
conditions of the Robin type.
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For any metric spaces X and Y we denote by C(X,Y ) the class of all continuous
functions from X into Y . Let N and Z be the sets of natural numbers and integers
respectively. Denote by l∞ the class of all real sequences p = {pµ}µ∈N such that
‖p‖∞ = sup{|pµ| : µ ∈ N} < ∞. For simplicity we will write p = {pµ} instead of
p = {pµ}µ∈N. If p, q ∈ l∞, p = {pµ}, q = {qµ}, then we set p ∗ q = {pµqµ}. Put
R∞n to denote the set of all q = (q1, . . . , qn), such that qj ∈ l∞, 1 ≤ j ≤ n. We
use the symbol Mn×n to denote the set of all real symmetric n × n matrices. We
will use vectorial inequalities with the understanding that the same inequalities hold
between their corresponding components. Analogously we understand the inequalities
between infinite sequences. Inequalities between matrices are interpreted by means of
quadratic forms.

Let a > 0, b = (b1, . . . , bn) ∈ Rn, bj > 0 for j = 1, . . . , n, be given. Define the sets

E = [0, a]× [−b, b], E0 = {0} × [−b, b], ∂0E = E \
(

[0, a]× (−b, b)
)
.

Write

∂j.+E =
{

(t, x) ∈ ∂0E : xj = bj

}
, ∂j.−E =

{
(t, x) ∈ ∂0E : xj = −bj

}
, 1 ≤ j ≤ n.

Set Ω = E × C(E, l∞)×Rn ×Mn×n. Suppose that

f : Ω→ l∞, f = {fµ}, ϕ : E0 → l∞, ϕ = {ϕµ},

β, ψ : ∂0E → R∞n ,

β = (β1, . . . , βn), ψ = (ψ1, . . . , ψn), βj = {βj.µ}, ψj = {ψj.µ}, 1 ≤ j ≤ n,

are given functions. For the function z : E → l∞, z = {zµ}, of the variables (t, x),
x = (x1, . . . , xn), and for 1 ≤ j ≤ n we write

∂tz = {∂tzµ}, ∂xj
z = {∂xj

zµ}, F [z] = {F (µ)[z]},

F (µ)[z](t, x) = fµ(t, x, z, ∂xzµ(t, x), ∂xxzµ(t, x)),

where ∂xzµ = (∂x1
zµ, . . . , ∂xn

zµ), ∂xxzµ = [∂xixj
zµ]i,j=1,...,n, µ ∈ N. We consider the

infinite countable system of differential functional equations

∂tz(t, x) = F [z](t, x) (1.1)

with the initial condition

z(t, x) = ϕ(t, x) on E0, (1.2)

and with the following boundary conditions

βj(t, x) ∗ z(t, x) + ∂xjz(t, x) = ψj(t, x) on ∂j.+E, (1.3)

βj(t, x) ∗ z(t, x)− ∂xj
z(t, x) = ψj(t, x) on ∂j.−E, (1.4)

where 1 ≤ j ≤ n.
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We will assume that the functional dependence in (1.1) is of the Volterra type.
Assumption H[V]. The function f : Ω→ l∞ satisfies the Volterra condition, i.e. for
each (t, x) ∈ E, q ∈ Rn, r ∈ Mn×n and w, w̄ ∈ C(E, l∞) such that w(τ, y) = w̄(τ, y),
(τ, y) ∈ E, τ ≤ t, we have f(t, x, w, q, r) = f(t, x, w̄, q, r).

We say that a function v : E → l∞, v = {vµ}, is a regular solution of the system
(1.1) if the derivatives ∂tv = {∂tvµ}, ∂xixj

v = {∂xixj
vµ}, 1 ≤ i, j ≤ n, exist on E,

∂tv, ∂xixj
v ∈ C(E, l∞), 1 ≤ i, j ≤ n, and v satisfies (1.1) on E.

A regular solution v of (1.1) is said to be parabolic if for any two symmetric
matrices r = [rij ]i,j=1,...,n, r̄ = [r̄ij ]i,j=1,...,n such that r − r̄ ≤ 0 the inequality
fµ(t, x, v, ∂xvµ(t, x), r) ≤ fµ(t, x, v, ∂xvµ(t, x), r̄) is true for (t, x) ∈ E, µ ∈ N. The
parabolic solution v of (1.1) such that the conditions (1.2)–(1.4) hold, is called a
P-solution of (1.1)–(1.4).

Approximate methods for parabolic differential or functional differential equations
were considered by many authors and under various assumptions. The main problem
in these investigations is to find suitable difference or functional difference equations
which are consistent with respect to the original problem and stable. It is not our aim
to show a full review of papers concerning difference methods for parabolic functional
differential problems. Bibliographical information can be found in [6–8,10].

We propose difference explicit Euler type schemes which consist of replacing partial
derivatives in (1.1) by suitable difference operators. Quasilinear parabolic equations
with the Robin conditions are considered in [3]. In the case of quasilinear equations,
the choice of the difference operators approximating mixed derivatives is locally deter-
mined by the sign of the coefficients in the differential equations and upwind difference
schemes are used. In the present paper, the choice of suitable difference operators de-
pends on global assumptions on given functions (see the definitions (2.5), (2.6) and the
conditions 2) of Assumption H0[∆]). By using explicit schemes, the approximation of
the Robin boundary conditions (1.3), (1.4) requires an extention of the mesh outside
the set E.

In the first part of the present paper we consider an infinite system of functional
difference equations generated by (1.1)–(1.4). If the original differential problem is
reduced to the finite one, then the difference method is practically solvable.

The next part of the paper deals with truncated finite differential functional prob-
lems corresponding to (1.1)–(1.4) and difference functional methods related to them.
We show results of numerical experiments.

Results presented in the paper are new also in the case of infinite systems without
a functional dependence.

2. INFINITE DIFFERENCE SCHEMES

To formulate a difference problem corresponding to (1.1)–(1.4) we introduce the fol-
lowing notation and assumptions. Denote by F(A,B) the class of all functions de-
fined on A and taking values in B, where A and B are arbitrary sets. If x ∈ Rn,
x = (x1, . . . xn) then we put ‖x‖ = |x1|+. . .+|xn|. We define a mesh on the set E in the
following way. Suppose that (h0, h

′), where h′ = (h1, . . . , hn), hi > 0, 0 ≤ i ≤ n, stand
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for steps of the mesh. For h = (h0, h
′) and (r,m) ∈ Z1+n, where m = (m1, . . . ,mn),

we define nodal points as follows:

t(r) = rh0, x(m) = (x
(m1)
1 , . . . , x(mn)

n ) = (m1h1, . . . ,mnhn).

Denote by ∆ the set of all h = (h0, h
′) such that there are N0 ∈ N and N =

(N1, . . . , Nn) ∈ Nn with the properties: N0h0 = a and (N1h1, . . . , Nnhn) = b. Let

R1+n
h = { (t(r), x(m)) : (r,m) ∈ Z1+n },

Eh = E ∩R1+n
h , E0.h = E0 ∩R1+n

h , ∂0Eh = ∂0E ∩R1+n
h

and
E′h =

{
(t(r), x(m)) ∈ Eh : 0 ≤ r ≤ N0 − 1

}
.

For every (t(r), x(m)) ∈ ∂0Eh we define the set S(m) of s = (s1, . . . , sn) such that
‖s‖ = 1 or ‖s‖ = 2 and

if x
(mj)
j = bj , then sj ∈ {0, 1}, if x

(mj)
j = −bj , then sj ∈ {0,−1},

and if − bj < x
(mj)
j < bj , then sj = 0,

where 1 ≤ j ≤ n. Let

∂+0 Eh = {(t(r), x(m+s)) : (t(r), x(m)) ∈ ∂0Eh, s ∈ S(m)} and E+
h = ∂+0 Eh∪Eh.

If Ah ⊂ R1+n
h and z : Ah → l∞, ω : Ah → R, then we write z(r,m) = z(t(r), x(m))

and ω(r,m) = ω(t(r), x(m)) on Ah. Set ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 standing
on i-th place. We define the difference operators δ0, δ = (δ1, . . . , δn) and δ+i , δ

−
i ,

1 ≤ i ≤ n, in the following way. For z : E+
h → l∞, z = {zµ}, and (t(r), x(m)) ∈ E′h set

δ0z
(r,m)
µ =

1

h0
(z(r+1,m)
µ − z(r,m)

µ ), (2.1)

δiz
(r,m)
µ =

1

2hi
(z(r,m+ei)
µ − z(r,m−ei)µ ), (2.2)

δ+i z
(r,m)
µ =

1

hi
(z(r,m+ei)
µ − z(r,m)

µ ), δ−i z
(r,m)
µ =

1

hi
(z(r,m)
µ − z(r,m−ei)µ ), (2.3)

where 1 ≤ i ≤ n, µ ∈ N. The difference operator δ(2) = [δij ]i,j=1,...,n, is defined as
follows. Write

δiiz
(r,m)
µ = δ+i δ

−
i z

(r,m)
µ , 1 ≤ i ≤ n, µ ∈ N. (2.4)

Put J =
{

(i, j) : 1 ≤ i, j ≤ n, i 6= j
}

and suppose that for each µ ∈ N we have
defined two disjoint sets Jµ.+, Jµ.− ⊂ J such that Jµ.+∪Jµ.− = J . Then for (i, j) ∈ J

if (i, j) ∈ Jµ.+, then δijz
(r,m)
µ =

1

2

(
δ+i δ

+
j z

(r,m)
µ + δ−i δ

−
j z

(r,m)
µ

)
, (2.5)

if (i, j) ∈ Jµ.−, then δijz
(r,m)
µ =

1

2

(
δ+i δ

−
j z

(r,m)
k + δ−i δ

+
j z

(r,m)
µ

)
. (2.6)
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Solutions of difference equations will be defined on the set E+
h . Since system (1.1)

contains the functional variable z which is an element of the space C(E, l∞), we need
an interpolating operator Th : F(E+

h , l
∞)→ C(E, l∞). Additional assumptions on Th

will be required in the next part of this paper. For z : E+
h → l∞, z = {zµ}, we put

on E′h
δ0z = {δ0zµ}, Fh[z] = {Fh.µ[z]},

Fh.µ[z](r,m) = fµ(t(r), x(m), Thz, δz(r,m)
µ , δ(2)z(r,m)

µ ), µ ∈ N.

If (t(r), x(m)) ∈ ∂0Eh, s ∈ S(m), then we write

gh[z](r,m,s) = 2

n∑
j=1

s2jhjψj(t
(r), x(m))− (z(r,m+s) + z(r,m−s)) ∗

n∑
j=1

s2jhjβj(t
(r), x(m)).

We will approximate solutions of (1.1)–(1.4) by means of solutions of the difference
functional problem

δ0z
(r,m) = Fh[z](r,m) on E′h, (2.7)

z(r,m) = ϕ
(r,m)
h on E0.h, (2.8)

z(r,m+s) − z(r,m−s) = gh[z](r,m,s) on ∂0Eh, s ∈ S(m), (2.9)

where ϕh : E0.h → l∞, ϕh = {ϕh.µ}, is a given function.
Now we introduce first assumptions which allow us to obtain the existence of the

unique solution of the difference problem (2.7)–(2.9). Under these assumptions we
also obtain useful estimates for the solution of (2.7)–(2.9) and for the P-solution of
the differential problem (1.1)–(1.4).

For w ∈ C(E,R) and for z ∈ F(E+
h ,R) we put

|w|t = max
{
|w(τ, x)| : (τ, x) ∈ E, τ ≤ t

}
, t ∈ [0, a],

|z|(r) = max
{
|z(ν,m)| : (t(ν), x(m)) ∈ Eh, ν ≤ r

}
, 0 ≤ r ≤ N0.

If w ∈ C(E, l∞), w = {wµ}, and z ∈ F(E+
h , l
∞), z = {zµ}, then we set |w|t = {|wµ|t},

t ∈ [0, a], and |z|(r) = {|zµ|(r)}, 0 ≤ r ≤ N0.
Assumption H[Th]. The operator Th : F(E+

h , l
∞) → C(E, l∞) is linear, Thz =

{Thzµ} for z ∈ F(E+
h , l
∞), z = {zµ}, and the mapping Th : F(E+

h ,R) → C(E,R)
satisfies the conditions:

1) if ω, ω̄ ∈ F(E+
h ,R) and ω = ω̄ on Eh then Thω = Thω̄,

2) for ω : E+
h → R and 0 ≤ r ≤ N0 we have |Thω|t(r) = |ω|(r),

3) if w : E → R is of class C1 and wh is the restriction of w to the set Eh then there
exists γ̃ : ∆→ R+ such that |Thwh − w |a ≤ γ̃(h) and limh→0 γ̃(h) = 0.

Remark 2.1. To define an example of Th : F(E+
h ,R)→ C(E,R) satisfying the above

conditions we can use the interpolating operator proposed in [5] for the construction of
difference scheme corresponding to first order partial differential functional equations.
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If p ∈ l∞, p = {pµ}, then we write |p| = {|pµ|}. Let 0 ∈ l∞ and 1 ∈ l∞ be the
sequences with all the elements equal to 0 and 1 respectively. Put R+ = [0,+∞) and

l∞+ =
{
p ∈ l∞ : p = {pµ}, pµ ∈ R+, µ ∈ N

}
,

l∞0 =
{
p ∈ l∞+ : p = {pµ}, lim

µ→∞
pµ = 0

}
.

Assumption H[σ0]. The functions f : Ω → l∞, β, ψ : ∂0E → R∞n and ϕ : E0 → l∞

satisfy the conditions:

1) there is A0 ∈ l∞+ such that |ϕ(t, x)| ≤ A0 on E0,
2) there is b̃ ∈ l∞, b̃ = {b̃µ}, such that βj(t, x) ≥ b̃ > 0 on ∂0E, 1 ≤ j ≤ n,
3) there exist σ0 ∈ C([0, a]× l∞+ , l∞+ ) of variables (t, p), and L0 ∈ l∞+ such that

(i) σ0 is nondecreasing with respect to both variables and σ0(t, p) ≤ L0 for
(t, p) ∈ [0, a]× l∞+ ,

(ii) there exists on [0, a] a maximal solution ω0 = {ω0.µ} of the Cauchy problem

ω′(t) = σ0(t, ω(t)), ω(0) = A0, (2.10)

4) the estimates

|f(t, x, w, 0, 0)| ≤ σ0(t, |w|t), (t, x, w) ∈ E × C(E, l∞),

|ψj(t, x)| ≤ b̃ ∗ ω0(t), (t, x) ∈ ∂0E, 1 ≤ j ≤ n, (2.11)

are satisfied.

Remark 2.2. Suppose that Assumption H[σ0] is satisfied. Then P-solution
v : E → l∞ of problem (1.1)–(1.4) satisfies the estimate

|v(t, x)| ≤ ω0(t) on E

where ω0 is the maximal solution of (2.10). This assertion follows from the comparison
theorem for infinite systems of parabolic functional differential equations (see [2]).

Let E+ = [0, a]× (−b+ , b+), where b
+ ∈ Rn+ and b

+

> b.
Assumption H0[∆]. The functions f : Ω→ l∞, β : ∂0E → R∞n , ϕh : E0.h → l∞ and
h ∈ ∆ are such that:

1) Assumption H[V] is satisfied,
2) for each µ ∈ N there exist the derivatives

∂qfµ = (∂q1fµ, . . . , ∂qnfµ ) and ∂rfµ = [∂rijfµ]i,j=1,...,n

on Ω, they are continuous with respect to (q, r) and for P ∈ Ω

∂rijfµ(P ) ≥ 0 for (i, j) ∈ Jµ.+, ∂rijfµ(P ) ≤ 0 for (i, j) ∈ Jµ.−,

3) there is A0 ∈ l∞+ , A0 = {A0.µ}, such that |ϕ(r,m)
h | ≤ A0 on E0.h,
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4) E+
h ⊂ E+ and the inequalities

1− 2

n∑
i=1

h0
h2i
∂riif(P ) +

∑
(i,j)∈J

h0
hihj

|∂rijf(P )| ≥ 0, (2.12)

1

hi
∂riif(P )−

n∑
j=1,j 6=i

1

hj
|∂rijf(P )| − 1

2
|∂qif(P )| ≥ 0, 1 ≤ i ≤ n, (2.13)

hold with P ∈ Ω, where ∂qif = {∂qifµ}, 1 ≤ i ≤ n, and the inequality

1−
n∑
j=1

hjβj(t, x) ≥ 0 (2.14)

holds on ∂0E.

Lemma 2.3. If Assumptions H[ Th ], H[σ0 ] and H0[∆ ] are satisfied then there exists
exactly one solution uh : E+

h → l∞ of problem (2.7)–(2.9) and

|u(r,m)
h | ≤ ω0(t(r)) on Eh, (2.15)

where ω0 is the maximal solution of (2.10).

To prove Lemma 2.3 we can use the techniques from [3] for quasilinear problems.
We need relations

δ0u
(r,m)
h.µ =

n∑
i,j=1

∂rijfµ(P (r,m)
µ [uh]) δiju

(r,m)
h.µ +

+

n∑
i=1

∂qif
(µ)(P (r,m)

µ [uh]) δiu
(r,m)
h.µ + f (µ)(t(r), x(m), Thuh, 0, 0), µ ∈ N,

where (t(r), x(m)) ∈ E′h and P
(r,m)
µ [uh] = (t(r), x(m), Thuh, ξδu(r,m)

h.µ , ξδ(2)u
(r,m)
h.µ ),

ξ ∈ (0, 1), instead of (21) in [3].

3. CONVERGENCE OF DIFFERENCE METHODS

Now we formulate general conditions for the convergence of the method (2.7)–(2.9).
For p ∈ l∞+ we define Cp(E, l∞) = {w ∈ C(E, l∞) : |w|a ≤ p}.
Assumption H[σ]. The function f : Ω → l∞ is continuous, Assumption H[σ0] is
satisfied and

1) the sequence A ∈ l∞+ is such that A > 0 and A ≥ ω0(a),
2) there exists σ ∈ C([0, a]× l∞+ , l∞+ ), σ = {σµ}, and L ∈ l∞+ such that

(i) σ is nondecreasing with respect to both variables, σ(t,0) = 0, t ∈ [0, a], and
σ(t, p) ≤ L on [0, a]× l∞+ ,
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(ii) the function ω̃(t) = 0, t ∈ [0, a], is the unique solution of the problem

ω′(t) = σ(t, ω(t)), ω(0) = 0,

3) the estimate

| f(t, x, w, q, r)− f(t, x, w̄, q, r) | ≤ σ(t, |w − w̄|t)

is satisfied for (t, x) ∈ E, q ∈ Rn, r ∈Mn×n and w, w̄ ∈ CA(E, l∞).

Assumption H1[∆]. The functions f : Ω→ l∞, β : ∂0E → R∞n , ϕh : E0.h → l∞ and
h ∈ ∆ satisfy Assumption H0[∆] and

1) there is a sequence B ∈ l∞+ such that βj(t, x) ≤ B on ∂0E, 1 ≤ j ≤ n,
2) there is a constant C̃ > 0 such that ‖h′‖2 ≤ C̃h0.

Theorem 3.1. Suppose that Assumptions H[Th], H1[∆ ] and H[σ] are satisfied and

1) the function v : E+ → l∞, v = {vµ}, is such that v(·, x) : [0, a] → l∞, x ∈
(−b+ , b+), is of class C1, v(t, ·) : (−b+ , b+) → l∞, t ∈ [0, a], is of class C3 and
there are c0, c1 ∈ l∞+ such that

|∂xixj
v(t, x)| ≤ c0, |∂xixjxk

v(t, x)| ≤ c1 on E+, 1 ≤ i, j, k ≤ n,

and v is P-solution of (1.1)–(1.4) on E,
2) the function uh : E+

h → l∞, uh = {uh.µ}, is the solution of problem (2.7)–(2.9),
3) there exists a function γϕ : ∆→ l∞+ such that limh→0 γϕ(h) = 0 and

|ϕ(r,m)
h − ϕ(t(r), x(m)) | ≤ γϕ(h) on E0.h.

Then there is γ : ∆→ l∞+ such that limh→0 γ(h) = 0 and

|u(r,m)
h − v(t(r), x(m)) | ≤ γ(h) on E+

h . (3.1)

We omit the proof of Theorem 3.1. The case of quasilinear problems is proved
in [3].

4. FINITE SYSTEMS OF DIFFERENCE EQUATIONS

The main task in investigations presented in this part of the paper is to find a finite
difference scheme corresponding to the original infinite problem (1.1)–(1.4). We will
apply the truncation method.

Fix k ∈ N. Let ϕ̃ ∈ C(E, l∞), ϕ̃ = {ϕ̃µ}, be such that ϕ̃ = ϕ on E0. For
w : E → l∞, w = {wµ}, we put

[w]k.ϕ̃ = {w̄µ}, where w̄µ = wµ for 1 ≤ µ ≤ k and w̄µ = ϕ̃µ for µ > k.
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If D ⊂ E and w : D → l∞, w = {wµ}, then the symbol w[k] denotes the function
w[k] : D → Rk given by w[k] = (w1, . . . , wk). We will treat an element p ∈ Rk,
p = (p1, . . . , pk), also as the sequence p = {pµ} with pµ = 0 for µ > k. Write

F [k][z] = (F
[k]
1 [z], . . . , F

[k]
k [z]),

F [k]
µ [z](t, x) = fµ(t, x, [z]k.ϕ̃, ∂xzµ(t, x), ∂xxzµ(t, x)),

where z : E → Rk, z = (z1, . . . , zk), 1 ≤ µ ≤ k.
Consider the finite differential functional system

∂tz(t, x) = F [k][z](t, x) (4.1)

with the initial boundary conditions

z(t, x) = ϕ[k](t, x), (t, x) ∈ E0, (4.2)

β[k](t, x) ∗ z(t, x) + ∂xj
z(t, x) = ψ[k](t, x), (t, x) ∈ ∂j.+E, (4.3)

β[k](t, x) ∗ z(t, x)− ∂xjz(t, x) = ψ[k](t, x), (t, x) ∈ ∂j.−E, (4.4)

where 1 ≤ j ≤ n.
To estimate the difference between the solution of the infinite problem (1.1)–(1.4)

and the solution of the truncated problem (4.1)–(4.4) we formulate additional as-
sumptions.
Assumption H[σ, ϕ]. The functions f : Ω→ l∞, β : ∂0E → R∞n satisfy Assumption
H[σ] and the function ϕ ∈ C(E0, l

∞) is such that there exists ϕ̃ ∈ C(E, l∞), ϕ̃ = {ϕ̃µ},
with the properties:

1) ϕ̃(t, x) = ϕ(t, x) for (t, x) ∈ E0 and |ϕ̃|a ≤ Ã with Ã = 1
2A,

2) the function ϕ̃(·, x) : [0, a]→ l∞, x ∈ [−b, b], is of class C1, the function
ϕ̃(t, ·) : [−b, b] → l∞, t ∈ [0, a], is of class C2 and there is d ∈ l∞+ , d = {dµ}, such
that

|∂xixj
ϕ̃(t, x)| ≤ d, (t, x) ∈ E, 1 ≤ i, j ≤ n,

3) there is c ∈ l∞0 , c = {cµ}, such that

| ∂tϕ̃(t, x)− F [ϕ̃](t, x) | ≤ c for (t, x) ∈ E,

and the maximal solution ω̃ = {ω̃µ} of the problem

ω′(t) = σ(t, ω(t)) + c, ω(0) = 0, (4.5)

exists on [0, a] and limµ→∞ ω̃µ(t) = 0 uniformly on [0, a],
4) the estimates

|βj(t, x) ∗ ϕ̃(t, x) + ∂xj
ϕ̃(t, x)− ψj(t, x) | ≤ b̃ ∗ ω̃(t), (t, x) ∈ ∂j.+E,

|βj(t, x) ∗ ϕ̃(t, x)− ∂xj
ϕ̃(t, x)− ψj(t, x) | ≤ b̃ ∗ ω̃(t), (t, x) ∈ ∂j.−E,

are satisfied for 1 ≤ j ≤ n.
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Remark 4.1. If we assume that the function ϕ̃ satisfies the initial boundary condi-
tions (1.2)–(1.4) and for each µ ∈ N there are Ãµ, B̃µ ∈ R+ such that for (t, x) ∈ E

|fµ(t, x, ϕ̃, ∂xϕ̃µ(t, x)∂xxϕ̃µ(t, x))| ≤ Ãµ, |∂tϕ̃µ(t, x)| ≤ B̃µ

and limµ→∞ Ãµ = limµ→∞ B̃µ = 0, then the conditions 3) and 4) of Assumption
H[σ, ϕ] are satisfied.

Remark 4.2. Let aµj ∈ R+, µ, j ∈ N, be such that the series Sµ =
∑∞
j=1 aµj , µ ∈ N,

are convergent and the sequence S = {Sµ} tends to zero. Fix the sequence p̃ ∈ l∞+ ,

p̃ = {p̃µ}, such that p̃µ > 0 for µ ∈ N. Put I[p̃] =
{
p ∈ l∞+ : p ≤ p̃

}
. Then the

function σ : [0, a]× l∞+ → l∞+ , σ = {σµ}, given by

σµ(t, p) =

∞∑
j=1

aµj pj , p ∈ I[p̃], and σµ(t, p) =

∞∑
j=1

aµj p̃j , p ∈ l∞+ \ I[p̃],

where t ∈ [0, a], µ ∈ N, satisfies the required conditions.

The following lemma will be useful in the sequel.

Lemma 4.3. If Assumption H[σ, ϕ] is satisfied and the function v : E → l∞ is
P-solution of (1.1)–(1.4) then

|v(t, x)− ϕ̃(t, x)| ≤ ω̃(t), (t, x) ∈ E,

where ω̃ is the maximal solution of the problem (4.5).

Proof. Define ṽ : E → l∞, ṽ = {ṽµ}, by ṽ = v − ϕ̃. Let the function G = {Gµ} be
defined on E × CÃ(E, l∞)× Rn ×Mn×n in the following way

Gµ(t, x, w, q, r) = fµ(t, x, w + ϕ̃, q + ∂xϕ̃µ(t, x)r + ∂xxϕ̃µ(t, x))− ∂tϕ̃µ(t, x),

where µ ∈ N and r = [rij ]i,j=1,...,n. Consider the infinite differential functional system

∂tzµ(t, x) = Gµ(t, x, z, ∂xzµ(t, x), ∂xxzµ(t, x)), µ ∈ N, (4.6)

where z = {zµ}, ∂xxzµ = [∂xixjzµ]i,j=1,...,n. It follows that the function ṽ is a parabolic
solution of (4.6) such that ṽ(t, x) = 0 on E0 and

|βj(t, x) ∗ ṽ(t, x) + ∂xj ṽ(t, x) | ≤ b̃ ∗ ω̃(t) on ∂j.+E,

|βj(t, x) ∗ ṽ(t, x)− ∂xj
ṽ(t, x) | ≤ b̃ ∗ ω̃(t) on ∂j.−E,

where 1 ≤ j ≤ n. The following estimate

|Gµ(t, x, w, 0, 0)| ≤
≤ |fµ(t, x, w + ϕ̃, ∂xϕ̃µ(t, x), ∂xxϕ̃µ(t, x))− fµ(t, x, ϕ̃, ∂xϕ̃µ(t, x), ∂xxϕ̃µ(t, x))|+

+ |F (µ)[ϕ̃]− ∂tϕ̃µ(t, x)| ≤
≤ σµ(t, |w|t) + cµ
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is satisfied for (t, x) ∈ E, w ∈ CÃ(E, l∞) and µ ∈ N. It follows from the comparison
theorem (see [2]) that

|ṽ(t, x)| ≤ ω̃(t) on E.

The proof is complete.

For a function w ∈ C(E,Rk), w = (w1, . . . , wk), we write |w|t = (|w1|t, . . . , |wk|t),
t ∈ [0, a]. Put CÃ(E,Rk) = {w ∈ C(E,Rk) : |w|a ≤ Ã}, where Ã ∈ l∞ is given in
Assumption H[σ, ϕ].

Lemma 4.4. Suppose that Assumption H[σ, ϕ] is satisfied and:

1) the function v : E → l∞, v = {vµ}, is P-solution of (1.1)–(1.4),
2) for each k ∈ N the function u[k] : E → Rk, u[k] = (u

[k]
1 , . . . , u

[k]
k ), is the parabolic

solution of (4.1)–(4.4).

Then there exists ω[k] ∈ C([0, a],Rk+) such that

|v[k](t, x)− u[k](t, x)| ≤ ω[k](t), (t, x) ∈ E,

and limk→∞ ‖ω[k](t)‖∞ = 0 uniformly on [0, a].

Proof. Let k ∈ N be fixed and let the function ṽ[k] : E → Rk be given by ṽ[k] = u[k]−
v[k]. We define the functionH : E×CÃ(E,Rk)×Rn×Mn×n → Rk,H = (H1, . . . ,Hk),
as follows:

Hµ(t, x, w, q, r) =

= fµ(t, x, [w+ v]k.ϕ̃, q+∂xvµ(t, x), r+∂xxvµ(t, x))− fµ(t, x, v, ∂xvµ(t, x), ∂xxvµ(t, x)).

Consider the differential functional system

∂tzµ(t, x) = Hµ(t, x, z, ∂xzµ(t, x), ∂xxzµ(t, x)), 1 ≤ µ ≤ k, (4.7)

where z = (z1, . . . , zk), with the homogeneous initial boundary conditions

z(t, x) = 0 on E0, (4.8)

β
[k]
j (t, x) ∗ z(t, x) + ∂xj

z(t, x) = 0 on ∂j.+E, (4.9)

β
[k]
j (t, x) ∗ z(t, x)− ∂xj

z(t, x) = 0 on ∂j.−E, (4.10)

where 1 ≤ j ≤ n. The function ṽ[k] is a parabolic solution of the problem (4.7)–(4.10).
We use the comparison theorem for systems of differential functional equations to
estimate the values of ṽ[k].

We need the following additional notation. For p ∈ l∞, p = {pµ}, we denote by
0k.p the sequence {p̄µ} such that p̄µ = 0 for 1 ≤ µ ≤ k and p̄µ = pµ for µ > k. Let
σ[k] : [0, a]× Rk+ → Rk+, σ[k] = (σ

[k]
1 , . . . , σ

[k]
k ), be given by

σ[k]
µ (t, p) = σµ(t, p), 1 ≤ µ ≤ k. (4.11)
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We observe that

|fµ(t, x, [w + v]k.ϕ̃, ∂xvµ(t, x), ∂xxvµ(t, x))− fµ(t, x, v, ∂xvµ(t, x), ∂xxvµ(t, x))| ≤

≤ σ[k]
µ (t, |w|t) + σµ(t,0k.ω̃(t))

with (t, x) ∈ E, w ∈ CÃ(E,Rk), 1 ≤ µ ≤ k, where ω̃ is the maximal solution of (4.5).
Then

|Hµ(t, x, w, 0, 0)| ≤ σ[k]
µ (t, |w|t) + α[k]

µ

with α[k]
µ = σµ(a,0k.ω̃(a)), 1 ≤ µ ≤ k. Write α[k] = (α

[k]
1 , . . . , α

[k]
k ). It follows that

|ṽ[k](t, x)| ≤ ω[k](t) on E,

where ω[k] is the maximal solution of the problem

ω′(t) = σ[k](t, ω(t)) + α[k], ω(0) = 0. (4.12)

Since limk→∞ ‖α[k]‖∞ = 0, we have that limk→∞ ‖ω[k](t)‖∞ = 0 uniformly on [0, a].
This finishes the proof of Lemma 4.4.

Now we construct the difference problem related to (4.1)–(4.4). For z : E+
h → Rk,

z = (z1, . . . , zk), we write

F
[k]
h [z] = (F

[k]
h.1[z], . . . , F

[k]
h.k[z]),

F
[k]
h.µ[z](r,m) = fµ(t(r), x(m), [Thz]k.ϕ̃, δz(r,m)

µ , δ(2)z(r,m)
µ )

on E′h, 1 ≤ µ ≤ k. For (t(r), x(m)) ∈ ∂0Eh, s ∈ S(m) we put

g
[k]
h [z](r,m,s) = 2

n∑
j=1

s2jhjψ
[k]
j (t(r), x(m))−(z(r,m+s)

µ +z(r,m−s)µ )∗
n∑
j=1

s2jhjβ
[k]
j (t(r), x(m)).

Consider the difference functional problem

δ0z
(r,m) = F

[k]
h [z](r,m) on E′h, (4.13)

z(r,m) = (ϕ
[k]
h )(r,m) on E0.h, (4.14)

z(r,m+s) − z(r,m−s) = g
[k]
h [z](r,m,s) on ∂0Eh, s ∈ S(m). (4.15)

We formulate the main theorem in this part of the paper.

Theorem 4.5. Suppose that Assumptions H[σ, ϕ], H[Th], H1[∆] are satisfied, the
function v : E → l∞ is P-solution of (1.1)–(1.4) and for each k ∈ N:

1) the function u[k] : E+ → Rk is such that u[k](·, x) : [0, a] → Rk, x ∈ (−b+ , b+),
is of class C1, u[k](t, ·) : (−b+ , b+) → Rk, t ∈ [0, a], is of class C3 and there are
c
[k]
0 , c

[k]
1 ∈ Rk+ such that

|∂xixj
u[k](t, x)| ≤ c[k]0 , |∂xixjxk

u[k](t, x)| ≤ c[k]1 , (t, x) ∈ E+, 1 ≤ i, j, k ≤ n,

and u[k] is the parabolic solution of (4.1)–(4.4) on E,
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2) the function u[k]h : E+
h → Rk is the solution of (4.13)–(4.15),

3) there is γ[k]ϕ : ∆→ Rk+ such that limh→0 γ
[k]
ϕ (h) = 0 and

|(ϕ[k]
h )(r,m) − ϕ[k](t(r), x(m))| ≤ γ[k]ϕ (h) on E0.h.

Then there exist γ[k] : ∆→ Rk+ and ε[k] ∈ Rk+ such that

|(u[k]h )(r,m) − v[k](t(r), x(m))| ≤ γ[k](h) + ε[k] on Eh (4.16)

and limh→0 γ
[k](h) = 0, limk→∞ ‖ε[k]‖∞ = 0.

Proof. Let us fix k ∈ N. Using the methods from the proof of Theorem 3.1 we can
prove that

|(u[k]h )(r,m) − u[k](t(r), x(m))| ≤ ω̂[k]
h (t(r)) on E+

h

where ω̂[k]
h is the maximal solution of the problem

ω′(t) = σ[k](t, ω(t)) + γ̃[k](h), ω(0) = γ
[k]
0 (h),

with γ̃[k], γ[k]0 : ∆→ Rk+ satisfying condition limh→0 γ̃
[k](h) = limh→0 γ

[k]
0 (h) = 0 and

with σ[k] given by (4.11). It follows from Lemma 4.4 that

|u[k](t(r), x(m))− v[k](t(r), x(m))| ≤ ω[k](t(r)) on Eh

where ω[k] is the maximal solution of (4.12). Thus we obtain the assertion (4.16) with
γ[k](h) = ω

[k]
h (a) and ε[k] = ω[k](a).

5. NUMERICAL EXAMPLES

We consider two examples of functional differential infinite problems. All assumptions
of Theorem 4.5 for these problems are satisfied and we show that numerical calculated
error estimates are consistent with the theory.

Example 5.1. Let E = [0, a]× [−1, 1]2 with a = 0.25. Suppose that

fµ(t, x, w, q, r) = arctan(r11 + r22 − g(t, x)wµ(t, x2, x1))+

+ (x21 − 1)(x22 − 1)wµ(t, x) + gµ(w(t, x)),

where
g(t, x) = 4t2x21(x22 − 1)2 + 4t2x22(x21 − 1)2 + 2tx21 + 2tx22 − 4t,

g1(p) = 0, gµ(p) = pµ+1 + pµ−1 − 2µ6 µ
4 + 10µ2 + 5

(µ2 − 1)5
pµ, µ > 1.

Consider the functional differential system

∂tzµ(t, x) = fµ(t, x, z, ∂xzµ(t, x), ∂xxzµ(t, x))
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with the initial boundary conditions

zµ(t, x) = µ−5 on E0,

(1 + 4t(1− x23−j)) zµ(t, x)± 2 ∂xjzµ(t, x) = µ−5 on ∂j.±E,

where µ ∈ N and j ∈ {1, 2}. The exact solution is vµ(t, x) = µ−5 exp[t(x21−1)(x22−1)].
We take ϕ̃µ(t, x) = µ−5 on E for µ ∈ N. Let u[k]h be the solution of the difference
method (4.13)–(4.15) with ϕh = ϕ. The following Table 1 shows maximal error values
‖ e[k]h ‖∞ where e[k]h = |u[k]h − v[k] |(N0), for several steps h = (h0, h1, h2) and system
sizes k.

Table 1
k h0 h1 = h2 ‖ e[k]h ‖∞ − log2 ‖ e

[k]
h ‖∞

4 2−7 2−2 0.96312739241933 · 10−3 10.01998574424679
8 2−9 2−3 0.26850755315921 · 10−3 11.86274970753216
16 2−11 2−4 0.06917975692011 · 10−3 13.81929052997669
32 2−13 2−5 0.01741260986243 · 10−3 15.80950801909845

Example 5.2. Let E = [0, a]× [−1, 1] with a = 0.25. Suppose that

fµ(t, x, w, q, r) =

= arctan
(
r −

µ+1∑
n=2

4ntan(t)bn−1(x)[(4n+ 1)x2 − 3]
)

+

+

0.5(−x+1)∫
0.5(−x−1)

(wµ+1 − wµ)(t, s) ds+ gµ(t, x),

where

gµ(t, x) = − taµ+2(t)

2(2µ+ 5)

(3

4

)2µ+5(
γ2µ+5(x)− β2µ+5(x)

)
+

µ+1∑
n=2

2nan(t)bn(x),

β(x) = 3x2 − 1 + 2x for x ∈
[
− 1,

1

3

]
and β(x) = 0 for x ∈

(1

3
, 1
]
,

γ(x) = 0 for x ∈
[
− 1,−1

3

)
and β(x) = 3x2 − 1− 2x for x ∈

[
− 1

3
, 1
]
,

an(t) = (−1)n
4n − 4

(2n)!
t2n−1, bn(x) = x(x2 − 1)2n, n ≥ 2.

We consider the integral differential problem

∂tzµ(t, x) = fµ(t, x, z, ∂xzµ(t, x), ∂xxzµ(t, x)) on E,
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zµ(t, x) = 0 on E0,

zµ(t, x)± ∂xj
zµ(t, x) = 0 on ∂j.±E,

where µ ∈ N and j ∈ {1, 2}.
The exact solution is zµ(t, x) =

∑µ+1
n=2 t an(t)bn(x), µ ∈ N. We take, for µ ∈ N,

ϕ̃µ(t, x) = 8x sin4
(1

2
t(x2 − 1)

)
on E and ϕ̃µ(t, x) = 0 on E0 ∪ ∂0E.

We apply the interpolating operator Th : F(E+
h ,R)→ C(E,R) given in [5]. Then the

integrals are calculated by the use of trapezoidal rule. The following Table 2 shows
maximal error values ‖ e[k]h ‖∞, where e[k]h = |u[k]h − v[k] |(N0) and u[k]h is the solution
of (4.13)–(4.15) with ϕh = ϕ.

Table 2
k h0 h1 ‖ e[k]h ‖∞ − log2 ‖ e

[k]
h ‖∞

4 2−6 2−2 0.88806256460348 · 10−4 13.45897915544746
8 2−8 2−3 0.24163663270311 · 10−4 15.33680128710483
16 2−10 2−4 0.06391724973343 · 10−4 17.25536323679841
32 2−12 2−5 0.01597374728806 · 10−4 19.25586577443758
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