PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented work proposes a new dimming control schemes for indoor visible light communication which combines variable pulse-position modulation, colour shift keying as key schemes of IEEE 802.15.7 standard, and sub carrier-pulse-position modulation as a pulse-position modulation variant with orthogonal frequency division multiplexing. These schemes are then compared with traditional merging schemes utilizing pulse-width modulation and multiple pulse-position modulation with m-ary quadrature amplitude modulation OFDM. The proposed schemes are investigated in a typical room with a different lighting layout (i.e., distinctive and uniform lighting layout), followed by an illumination investigation to evaluate the performance of the proposed schemes, especially the enhanced achieved data rates, and to determine their limitations as reliable visible light communication systems that can satisfy both communication and illumination requirements.
Twórcy
  • Photonic Research Lab, Electrical Engineering Department, College of Engineering, Dawadmi, Shaqra University, 11961 Kingdom of Saudi Arabia. OSA Member
  • Photonic Research Lab, Electrical Engineering Department, College of Engineering, Dawadmi, Shaqra University, 11961 Kingdom of Saudi Arabia. OSA Member
  • Faculty of Engineering, Minia University, P.O. Box 61111, Minia, Egypt
  • Faculty of Engineering, Minia University, P.O. Box 61111, Minia, Egypt
  • Dept. of Electronics and Communication Eng., Faculty of Electronic Eng., Menoufia University, Qism Shebeen El-Kom, Shibin el Kom, Menofia, Egipt
Bibliografia
  • [1] Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51 (12), 26–32 (2013).
  • [2] O'Brien, D. & Katz, M. Optical wireless communications within fourth-generation wireless systems. J. Opt. Netw. 4 (6), 312–322 (2005).
  • [3] Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51 (12), 60–66 (2013).
  • [4] Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultracompact ultrafast-switching-speed all-optical 4 × 2 encoder based on photonic crystal. J. Comput. Electron. 18, 279–292 (2019). https://doi.org/10.1007/s10825-018-1278-6
  • [5] Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultra-high bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019). https://doi.org/10.1080/09500340.2019.1598587
  • [6] Mohammed, N. A., Hamed, M. M., Khalaf, A. A., Alsayyari, A. & EL-Rabaie, S. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019). https://doi.org/10.1016/j.rinp.2019.102478
  • [7] Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express. 23 (16), 20297–20313 (2015).
  • [8] Din, I. & Kim, H. Energy-efficient brightness control and data transmission for visible light communication. IEEE Photon. Technol. Lett. 26 (8), 781–784 (2014).
  • [9] Quintana, C., Guerra, V., Rufo, J., Rabadan, J. & Perez-Jimenez, R. Reading lamp-based visible light communication system for in-flight entertainment. IEEE Trans. Consum. Electron. 59 (1), 31–37 (2013).
  • [10] Yamazato, T. et al. Image-sensor-based visible light communica-tion for automotive applications. IEEE Commun. Mag. 52 (7), 88–97 (2014).
  • [11] Rust, I. C. & Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. in IEEE International Conference on Robotics and Automation (ICRA 2012), 2445–2450 (2012).
  • [12] Kahn, J. M. & Barry, J. R. Wireless infrared communications. Proc. IEEE Inst. Electr. Electron Eng. 85 (2), 265–298 (1997).
  • [13] Carruther, J. B. & Kahn, J. M. Angle diversity for nondirected wireless infrared communication. IEEE Trans. Commun. 48 (6), 960–969 (2000).
  • [14] Proakis, J. G. Digital Communications. 4th ed. New York, USA: McGraw Hill (2000).
  • [15] Wang, Z. et al. Performance of dimming control scheme in visible light communication system. Opt. Express. 20 (17), 18861–18868 (2012).
  • [16] You, X., Chen, J., Zheng, H. & Yu, C. Efficient data transmission using MPPM dimming control in indoor visible light communication. IEEE Photonics J. 7 (4), 1–12 (2015).
  • [17] Zafar, F., Karunatilaka, D. & Parthiban, R. Dimming schemes for visible light communication: the state of research. IEEE Wirel. Commun. 22 (2), 29–35 (2015).
  • [18] Wang, M. et al. Efficient coding modulation and seamless rate adaptation for visible light communications. IEEE Wirel. Commun. 22 (2), 86–93 (2015).
  • [19] Roberts, R. D. IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50 (3), 72–82 (2012).
  • [20] Bai, B., He, Q., Xu, Z. & Fan., Y. The color shift key modulation with non-uniform signaling visible light communication. in IEEE International Conference on Communications in China Workshops (ICCC 2012), 37–42 (2012).
  • [21] Pergoloni, S. et.al. Merging color shift keying and complementary pulse position modulation for visible light illumination and communication. J. Light. Technol. 33 (1), 192–200 (2015).
  • [22] Knutson, C. D. & Brown, J. M. IrDA Principles and Protocols. (MCL Press, 2004).
  • [23] Watson, M. Foreword. In IrDA Principles and Protocols. 1: vii–viii (MCL Press, 2004).
  • [24] Sugiyama, H., Haruyama, S. & Nakagawa, M. Brightness Control Methods for Illumination and Visible-Light Communication Systems. in 2007 Third International Conference on Wireless and Mobile Communications (ICWMC’07) 78 (2007). https://doi.org/10.1109/ICWMC.2007.26
  • [25] Elkarim, M. A, Mohammed, N. A. & Aly, M. H. Exploring the performance of indoor localization systems based on VLC-RSSI, including the effect of NLOS components using two light-emitting diode lighting systems. Opt. Eng. 54 (10), 105110 (2015).
  • [26] Komine, T. & Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50 (1), 100–107 (2004).
  • [27] Gancarz, J. E., Elgala, H. & Little, T. D. C. Overlapping PPM for band-limited visible light communication and dimming. J. Solid State Light. 2 (1), 3 (2015).
  • [28] Mohammed, N. A. & Badawi, K. A. Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM. IEEE Access. 6 (1), 52393–52405 (2018).
  • [29] Chen, J., You, X., Zheng, H. & Yu, C. Excess signal transmission with dimming control pattern in indoor visible light communication systems. in Proc.SPIE vol. 9270 (2014).
  • [30] Mao, L. et al. A mixed-interval multi-pulse position modulation scheme for real-time visible light communication system. Opt. Commun. 402, 330–335 (2017).
  • [31] Kumar, N. Visible light communication system for road safety applications. Ph.D. dissertation, Dept. Elect. Eng., Aveiro Univ., Porto, Portugal (2011).
  • [32] Bui, T., Singh, R., O’Farrell, T. & Biagi, M. Energy-constrained slot-amplitude modulation with dimming support. IEEE Photon. Technol. Lett. 30 (14), 1301–1304 (2018). https://doi.org/10.1109/LPT.2018.2845670
  • [33] Le-Minh H. et al. 100-Mb/s NRZ visible light communications using a post-equalized white LED. IEEE Photon. Technol. Lett. 21 (15), 1063–1065 (2009).
  • [34] Badawi, K. A., Mohammed, N. A. & Aly, M. H. Exploring BER performance of a SC-LPPM based LOS-VLC system with distinctive lighting. J. Optoelectron. Adv. Mater. 20 (5-6), 290–301 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-52762890-3cbe-4767-b1d7-04088747a3c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.