PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Process parameters effect on porosity rate of AlSi10Mg parts additively manufactured by Selective Laser Melting: challenges and research opportunities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present study aims to conduct a literature review on the various methods explored to enhance the quality of AlSi10Mg parts manufactured via the Selective Laser Melting (SLM) process. Specifically, the research focuses on identifying strategies for reducing the porosity level in SLM-fabricated AlSi10Mg parts. Considering the highly competitive nature of the market in which SLM technology is employed, improving part quality is necessary to ensure business continuity and maintain a competitive edge. Design/methodology/approach: The present study offers a comprehensive examination of the SLM process, particularly emphasising the diverse parameters that can influence the porosity rate in SLM-fabricated parts. By providing a detailed description of the SLM process, we highlight the intricacy of this technology and discuss the significance of various parameters. Furthermore, we present a literature review of prior research on SLM, summarising the studied parameters and their impact on porosity. This research aims to enhance our understanding of the SLM process and the parameters that affect the density of SLM-fabricated parts. Findings: The present study aims to identify research opportunities in the field of SLM technology. One particularly promising area of investigation is exploring the correlation between scan direction and the porosity rate in SLM-fabricated parts. This research seeks to enhance our understanding of the relationship between these two parameters and their potential impact on the quality of SLM-fabricated parts. Practical implications: By reducing porosity, industries such as aerospace and aeronautics can attain enhanced performance through mechanical system optimisation. Originality/value: The present study summarises the various methods previously investigated for reducing the porosity rate in parts manufactured using the SLM process. Additionally, it proposes new avenues for achieving further parameter optimisation to attain higher levels of quality.
Rocznik
Strony
22--33
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • National Higher School of Electricity and Mechanics, ENSEM, Hassan II University of Casablanca, B.P 8118 Oasis, Casablanca, Morocco
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, LARILE, Hassan II University of Casablanca, B.P 8112 Oasis, Casablanca, Morocco
autor
  • Laboratory of Advanced Research on Industrial and Logistic Engineering, LARILE, Hassan II University of Casablanca, B.P 8112 Oasis, Casablanca, Morocco
Bibliografia
  • 1. Gartner Hype Cycle for emerging technologies. Available from: https://www.gartner.com/smarterwithgartner/whats-new-in-gartners-hype-cycle-for-emerging-technologies-2015 (access in: 26.03.2022)
  • 2. O. Aourik, M. Othmani, B. Saadouki, Kh. Abouzaid, A. Chouaf, Fracture toughness of ABS additively manufactured by FDM process, Journal of Achievements in Materials and Manufacturing Engineering 109/2 (2021) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.6258
  • 3. G. Vega, R. Paz, A. Gleadall, M. Monzón, M.E. Alemán-Domínguez, Comparison of CAD and Voxel-Based Modelling Methodologies for the Mechanical Simulation of Extrusion-Based 3D Printed Scaffolds, Materials 14/19 (2021) 5670. DOI: https://doi.org/10.3390/ma14195670
  • 4. L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) 59-85. DOI: https://doi.org/10.5604/01.3001.0014.1525
  • 5. H. Schleifenbaum, A. Diatlov, C. Hinke, J. Bültmannn, H. Voswinckel, Direct photonic production: towards high speed additive manufacturing of individual goods, Production Engineering 5 (2011) 359-371. DOI: https://doi.org/10.1007/s11740-011-0331-0
  • 6. A.Y. Al-Maharma, S.P. Patil, B. Markert, Effects of porosity on the mechanical properties of additively manufactured components: a critical review, Materials Research Express 7 (2020) 122001. DOI: https://doi.org/10.1088/2053-1591/abcc5d
  • 7. T. Hirata, T. Kimura, T. Nakamoto, Effect of Internal Pores on Fatigue Properties in Selective Laser Melted AlSi10Mg Alloy, Materials Transactions 63/7 (2022) 1013-1020. DOI: https://doi.org/10.2320/matertrans.MT-L2022005
  • 8. W.H. Kan, L.N.S. Chiu, C.V. S. Lim, Y. Zhu, Y. Tian, D. Jiang, A. Huang, A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion, Journal of Materials Science 57 (2022) 9818-9865. DOI: https://doi.org/10.1007/s10853-022-06990-7
  • 9. M. Tang, P.C. Pistorius, Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting, International Journal of Fatigue 94/2 (2017) 192-201. DOI: https://doi.org/10.1016/j.ijfatigue.2016.06.002
  • 10. S. Thuketana, C. Taute, H. Möller, A. Plessis, Characterization of surface roughness and subsurface pores and their effect on corrosion in 3D-printed AlSi10Mg, Journal of the Southern African Institute of Mining and Metallurgy 120/6 (2020) 369-376. DOI: http://dx.doi.org/10.17159/2411-9717/1053/2020
  • 11. D. Kong, X. Ni, C. Dong, L. Zhang, J. Yao, C. Man, L. Wang, K. Xiao, X. Li, Anisotropic response in mechanical and corrosion properties of hastelloy X fabricated by selective laser melting, Construction and Building Materials 221 (2019) 720-729. DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.132
  • 12. B. Zhang, H. Liao, C. Coddet, Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture, Materials and Design 34 (2012) 753-758. DOI: https://doi.org/10.1016/j.matdes.2011.06.061
  • 13. K. Kempen, L. Thijs, J. Van Humbeeck, J.-P. Kruth, Mechanical properties of AlSi10Mg produced by selective laser melting, Physics Procedia 39 (2012) 439-446. DOI: https://doi.org/10.1016/j.phpro.2012.10.059
  • 14. K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, New developments of laser processing aluminium alloys via additive manufacturing technique, Physics Procedia 12/A (2011) 393-401. DOI: https://doi.org/10.1016/j.phpro.2011.03.050
  • 15. E. Louvis, P. Fox, C.J. Sutcliffe, Selective laser melting of aluminium components, Journal of Materials Processing Technology 211/2 (2011) 275-284. DOI: https://doi.org/10.1016/j.jmatprotec.2010.09.019
  • 16. I. Gibson, DW. Rosen, B. Stucker, Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing, Springer, New York, 2010. DOI: https://doi.org/10.1007/978-1-4419-1120-9
  • 17. T.N. Aboulkhair, M.N. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Additive Manufacturing 1-4 (2014) 77-86. DOI: https://doi.org/10.1016/j.addma.2014.08.001
  • 18. S. Pal, G. Lojen, V. Kokol, I. Drstvenšek, Reducing porosity at the starting layers above supporting bars of the parts made by Selective Laser Melting, Powder Technology 355 (2019) 268-277. DOI: https://doi.org/10.1016/j.powtec.2019.07.059
  • 19. F. Marinucci, A. Aversa, D. Manfredi, M. Lombardi, P. Fino, Evaluation of a Laboratory-Scale Gas-Atomized AlSi10Mg Powder and a Commercial-Grade Counterpart for Laser Powder Bed Fusion Processing, Materials 15/21 (2022) 7565. DOI: https://doi.org/10.3390/ma15217565
  • 20. N. Peter, Z. Pitts, S. Thompson, A. Saharan, Benchmarking build simulation software for laser powder bed fusion of metals, Additive Manufacturing 36 (2020) 101531. DOI: https://doi.org/10.1016/j.addma.2020.101531
  • 21. FormUp® 350. Available from: https://addupsolutions.com/machines/pbf/formup-350/ (access in: 27.03.2022)
  • 22. M. Liu, K. Wei, X. Zeng, High power laser powder bed fusion of AlSi10Mg alloy: Effect of layer thickness on defect, microstructure and mechanical property, Materials Science and Engineering: A 842 (2022) 143107. DOI: https://doi.org/10.1016/j.msea.2022.143107
  • 23. M.G. Martinez, AlSi10Mg parts produced by Selective Laser Melting (SLM), MSc Thesis, KU Leuven. Erasmus Stage/Universidad Carlos III de Madrid, Madrid, 2013.
  • 24. B. Ferrar, L. Mullen, R. Jones, R. Stamp, C.J. Sutcliffe. Gas flow effects on selective laser melting (SLM) manufacturing performance, Journal of Materials Processing Technology 212/2 (2012) 355-364. DOI: https://doi.org/10.1016/j.jmatprotec.2011.09.020
  • 25. E. Yasa, J.P. Kruth, Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser remelting, Procedia Engineering 19 (2011) 389-395. DOI: https://doi.org/10.1016/j.proeng.2011.11.130
  • 26. K.V. Yang, P. Rometsch, T. Jarvis, J. Rao, S. Cao, C. Davies, X. Wu, Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting, Materials Science and Engineering A 712 (2018) 166-174. DOI: https://doi.org/10.1016/j.msea.2017.11.078
  • 27. J. Chen, W. Hou, X. Wang, S. Chu, Z. Yang, Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg, Chinese Journal of Aeronautics 33/7 (2020) 2043-2054. DOI: https://doi.org/10.1016/j.cja.2019.08.017
  • 28. M. Giovagnoli, G. Silvi, M. Merlin, M.T. Di Giovanni, Optimisation of process parameters for an additively manufactured AlSi10Mg alloy: Limitations of the energy density-based approach on porosity and mechanical properties estimation, Materials Science and Engineering A 802 (2021) 140613. DOI: https://doi.org/10.1016/j.msea.2020.140613
  • 29. H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S Chen, Y.L. Feng, S.W. Li, H. Gao, H.J. Xu, Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method, Optics and Laser Technology 119 (2019) 105592. DOI: https://doi.org/10.1016/j.optlastec.2019.105592
  • 30. A.H. Maamoun, Y.F. Xue, M.A. Elbestawi, S.C. Veldhuis, Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy, Materials 11/12 (2018) 2343. DOI: https://doi.org/10.3390/ma11122343
  • 31. N. Read, W. Wang, Kh. Essa, M.M. Attallah, Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development, Materials and Design (1980-2015) 65 (2015) 417-424. DOI: https://doi.org/10.1016/j.matdes.2014.09.044
  • 32. H. Rao, S. Giet, K. Yang, X. Wu, C.H.J. Davies, The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting, Materials and Design 109 (2016) 334-346. DOI: https://doi.org/10.1016/j.matdes.2016.07.009
  • 33. C.h. Srinivasa Rakesh, N. Priyanka, R. Jayaganthan, N.J. Vasa, Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting, Materials Today: Proceedings 5/9/1 (2018) 17231-17238. DOI: https://doi.org/10.1016/j.matpr.2018.04.133
  • 34. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, R. Poprawe, Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg, Journal of Materials Processing Technology 221 (2015) 112-120. DOI: https://doi.org/10.1016/j.jmatprotec.2015.02.013
  • 35. T. Fiegl, M. Frank, A. Raza, E. Hryha, C. Körner, Effect of AlSi10Mg0.4 long-term reused powder in PBF-LB/M on the mechanical properties, Materials and Design 212 (2021) 110176. DOI: https://doi.org/10.1016/j.matdes.2021.110176
  • 36. A. Bin Anwar, Q.C. Pham, Study of the spatter distribution on the powder bed during selective laser melting, Additive Manufacturing 22 (2018) 86-97. DOI: https://doi.org/10.1016/j.addma.2018.04.036
  • 37. A. Bin Anwar, Q.C. Pham, Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength, Journal of Materials Processing Technology 240 (2017) 388-396. DOI: https://doi.org/10.1016/j.jmatprotec.2016.10.015
  • 38. S. Patel, H. Chen, M. Vlasea, Y. Zou, The influence of beam focus during laser powder bed fusion of a high reflectivity aluminium alloy — AlSi10Mg, Additive Manufacturing 59/B (2022) 103112. DOI: https://doi.org/10.1016/j.addma.2022.103112
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5275a528-1bd6-4a4e-97f1-625edc8fc213
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.