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Abstract 

A new greedy feature selection criterion is proposed as an enhancement of the 

conditional mutual information maximization criterion (CMIM). The new 

criterion, called CMIM-2, allows detecting relevant features that are 

complementary in the class prediction better than the original criterion. In 

addition, we present a methodology to approximate the conditional mutual 

information to spaces of three variables, avoiding its estimation in high-

dimensional spaces. Experimental results for artificial and UCI benchmark 

datasets show that the proposed criterion outperforms the original CMIM 

criterion. 
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1 Introduction 

Feature selection plays an important role in the improvement of accuracy, 

efficiency and scalability of classifiers [10, 17]. Typically, supervised learning 

in classification is described as finding the relationship between a set of input 

features      
 
    and a vector class  . The relevant features are often un-

known a priori in real problems. Usually among the features introduced to 

represent certain domain there are irrelevant and relevant features, and many 

of these relevant features are redundant to the vector class [14, 26]. On the 

other hand, the high dimensionality of data can cause the problem known as 

curse of dimensionality [11]. It has been demonstrated empirically that reduc-

ing the number of redundant and/or irrelevant features dramatically increases 

the computational speed of the classifiers and even their performance. In addi-

tion, it contributes to have a better understanding of the data and the classifi-

cation models [10, 14]. The goal of feature selection is to find a subset of 
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relevant but non-redundant variables [26]. This can be formalized as the selec-

tion of the minimum subset   with features from the original set  , such that 

       is as close as possible to       , where        and        are ap-

proximations of the probability distribution function of the class given the 

training set [14, 26]. The minimum subset   is called optimal subset. 

In practice, the exhaustive search for an optimal subset of features of car-

dinality       requires the evaluation of    possible subsets, increasing the 

number of candidate subsets exponentially with the number of features. This 

combinatorial problem is known to be NP-hard [4]. In order to avoid evaluat-

ing all subsets candidates, many feature selection algorithms try to approx-

imate the optimal subset of features. These methods fall into three categories 

[22]: Filters, Wrappers and Embedded. Filters evaluate the relevance of the 

features based on the intrinsic properties of the data, being independent of the 

learning process. Wrappers and embedded methods are dependent on the 

learning process and evaluate the relevance of the features according to the 

accuracy obtained by the classifiers. Wrappers, unlike embedded methods, 

define a classifier to find the optimal subset, so that various subsets of features 

are generated and evaluated. When searching for the optimal subset in the 

space of all subsets of features, the search method is wrapped around the 

model of classification. On the other hand, the search for an optimal subset of 

features in embedded methods is built into the classifier, so the search method 

is embedded in the classification model. Generally, the learning dependent 

methods yield subsets of features of better quality than the filter methods. 

However, the computational cost associated with learning and working in 

high dimensional spaces leaves the filter methods as a good option for pre-

processing data. 

In this paper, we propose a filter method that uses mutual information as 

a criterion for finding the optimal subset of features. Mutual information (MI) 

has been widely applied in feature selection methods [2, 3, 7, 8, 14, 19, 26]. 

The more important properties of MI are: (i) its ability to quantify nonlinear 

dependencies between features, and (ii) its invariance under transformations 

of the space [15]. Battiti [2] proposed a heuristic approach to find the optimal 

subset of features, an algorithm called Mutual Information Feature Selection 

(MIFS). It is based on using MI to rank the relevance of the features with 

respect to   and also on estimating the redundancy of the candidate feature to 

be selected with respect to the previously selected variables. Several variants 

of the MIFS algorithm have been proposed, that are more efficient in the 

management of the relevant features [7, 16, 19, 26]. However, all these me-

thods work under the assumption that the relevance (irrelevance) of a feature 

is associated with the degree of its dependence with the class vector  . But it 

can occur that some features acting independently do not provide any infor-

mation about  , but grouped together they do [8, 18]. An algorithm that deals 

with this problem is the Conditional Mutual Information Maximization 



CMIM-2: An Enhanced Conditional Mutual … 

7 

(CMIM) proposed by Fleuret [8], which makes a tradeoff between the predic-

tive power of the candidate feature (relevance to the class vector  ) and its 

independence from all features previously selected. This means that a candi-

date feature    would be selected only if it provides high information about   

and this information cannot be provided by any of the previously selected 

features. The latter is understood as the non-redundancy of    with respect to 

the previously selected features. 

In the remainder of this paper, section 2 describes a background on infor-

mation theory and its application to feature selection. Section 3 presents 

a description of the original CMIM algorithm and its limitations for feature 

selection. Section 4 describes the proposed algorithm based on an enhance-

ment of conditional mutual information criterion. Section 5 presents the simu-

lation results on artificial and benchmark datasets, demonstrating the effec-

tiveness of the proposed method. Finally, the conclusions are drawn in Sec-

tion 6. 

2 Background on information theory 

2.1 Mutual information 

A machine learning can be considered as a system that reduces the uncer-

tainty of a vector of classes (or outputs)   by extracting the information con-

tained in the input set  . Feature selection aims at finding the minimum subset 

of features     that yields the highest information about the output. The 

information theory of Shannon [23] provides an efficient way to quantify the 

amount of information among random variables through MI. 

Definition 1. Given the feature set  , the mutual information [5] is defined as 

amount of reduced uncertainty of the output class  , 

                  
      

        
 

  

   

  

   

 (1) 

where               is the probability of the different features of the set 

 ,               is the probability of the output class   and        is 

the joint probability of   and  . 

In the context of information theory, MI allows us to quantify the reduc-

tion of uncertainty of the output class   if the input set   is known. 

On the other hand, the feature selection problem is formally defined as fol-

lows [2]: 
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Definition 2. Given an initial set   with   features and the output class  , 

find the subset     with   features that is optimal in the sense that        
is maximum among all subsets of cardinality  . 

2.2 Type of variables in feature selection 

Traditionally, information theory is used to quantify concepts of relevance 

and redundancy widely used in feature selection methods. Next, we formalize 

these concepts and describe the different types of interaction between va-

riables. 

Relevance 

Given an input set   and output class  , the first step is to find which fea-

tures have more information to describe  . The decision of which features 

should be chosen is usually associated to the degree of dependency of each 

single feature when used to describe  . However, it can occur that a group of 

features is more relevant than the same features acting independently. This 

implies that there are levels of relevance. 

Kohavi and John [13] used a probabilistic approach to quantify the concept 

of relevance and characterized features as relevant or irrelevant. Later, Yu and 

Liu [26] added another level by distinguishing between strong relevance, 

which selects those feature of   that provide the highest information with 

respect to   and this information does not exist in other features; and the weak 

relevance, which selects those features that only give a certain level of know-

ledge (relative to  ) and can be replaced by other features without loss of 

information. Using information theory, these levels of relevance are forma-

lized by the following definition. 

Definition 3. Given a set of features  : 

A feature    is irrelevant to   iff: 

                      (2) 

A feature    is strongly relevant to   iff: 

                (3) 

A feature    is weakly relevant to   iff: 

                                           (4) 
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Redundancy 

The concept of redundancy is associated with the level of dependency 

among two or more features in  , which can be quantified by the common 

information shared by features. The redundancy has the following properties: 

it is non-linear, symmetric, non-negative and non-decreasing with the number 

of features. The latter property is justified by the fact that, unlike the relev-

ance, the amount of redundancy can never decrease when other variables are 

added [18]. 

The condition of redundancy can be captured in terms of MI through the notion 

of Markov blanket [14, 26], which is formalized in the following definition. 

Definition 4. (Markov blanket) Given a feature   , the subset         
   is a Markov blanket for    if: 

                         (5) 

which expresses that   must contain not only the information of    about  , 

but also the information from the remainder of features         . 
The concept of Markov blanket is according to Koller and Sahami [14] 

a stronger condition of conditional independence, so it is not possible to dis-

criminate between redundant or irrelevant features [18]. 

3 Conditional mutual information maximization (CMIM) 

criterion and its limitations 

One strategy to find the optimal subset     would be to evaluate all 

possible subsets in   of cardinality  , however, this is impossible in practice 

due to the combinatorial explosion of possible solutions. To avoid an exhaus-

tive search, the greedy selection strategy [2] begins with an empty set of se-

lected features ( ) and successively adds features one by one. The greedy 

selection algorithm delivers the most relevant features using the following 

procedure: 

1. Initialization: Set    ‘initial set of   features’,    ‘empty set’. 

2. Computation of the MI between the output class and each feature: 

      , compute        . 
3. Selection of the first feature: Find the feature    that maximizes        . 

Set       ,     . 
4. Greedy selection: Repeat until      . 

(a) Computation of the MI between features:       , compute 

           . 
(b) Selection of the next feature: Choose the feature      that maximiz-

es             and set       ,     . 
5. Output the set   containing the selected features. 
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The greedy selection algorithm finds the optimal subset of features   by 

selecting a new feature        incrementally through maximization of 

             (6) 

Using the chain rule property of MI, the functional (6) can be rewritten as 

                              (7) 

In (7), the second term on the right hand side,          , measures the re-

levance of the candidate variable    to predict the output   under the influence 

of set  . The first term        is the information about class   given by the 

previously selected feature set  , but this information is common to all candi-

date variables and therefore it can be discarded. Thus, the greedy selection 

algorithm can be modified to find the subset   that maximizes          , 
which represents a criterion of relevance [3]. In analytical terms, this ap-

proach yields the most relevant variables according to 

            
       

            (8) 

The greedy selection algorithm, using the criterion of relevance, avoids the 

evaluation of   
 
  candidate subsets, but estimating entropy or mutual infor-

mation in high-dimensional spaces is computationally intractable [8,19]. 

The conditional mutual information maximization algorithm (CMIM) [8, 

25] approximates the relevance criterion (8), by considering the MI between 

the candidate variable    and the output class   given each one of the va-

riables in the set  , separately. It allows preserving a certain tradeoff between 

the power prediction of    with respect to the output and the independence of 

the candidate feature with each one of the variables previously selected. 

CMIM considers that feature    is relevant only if it has information on   and 

this information is not contained by any of the variables already selected. 

Formally, the CMIM iterative scheme selection is expressed as follows,  

      

       
    

                                       

      
      

    
    

                          
  (9) 

The justification of using the minimum function in (9) is based on an ap-

proximation of the concept of Markov blanket. Fleuret [8] considers that the 

set   in equation (5) consists of a single feature in  . Therefore the feature    
can be discarded of the selection process if there exists a feature      such 

that    and C are conditionally independent given   . Since MI is always posi-

tive we have 
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              (10) 

Moreover, the feature        with the highest value of            is the 

most relevant one, which justifies the maximum function in (9). 

Although CMIM avoids redundancy, selects the relevant variables and 

avoids the multidimensional calculation of MI, its ability to identify and select 

variables interacting as groups with the output [12, 18] can be degraded when 

selecting the minimum value of conditional MI. To illustrate this limitation of 

CMIM we introduce the following example. 

Example 1. Let   ,   ,    and    be four binary random variables, related 

by the         function,        , as shown in Table 1. As can be seen 

from Table 1, none of the variables acting alone gives information of the class 

 , i.e., the relevance for each variable is null,                 
                 . On the other hand, the pair of variables         has 

the highest relevance, i.e.,                                    
      , where      is the entropy of  . 

Table 1. XOR problem plus two irrelevant variables. 

                    

0 1 1 1 0 

0 1 1 0 1 

0 0 1 1 1 

0 0 1 0 0 

 

Since all variables have null relevance, the first feature to be selected using 

CMIM depends only on the order they are entered, i.e., the feature selected by 

CMIM is   . For the selection of the second variable is necessary to deter-

mine                      of the remaining candidate variables. However, 

   is independent of the other variables and class  , therefore            
           . Considering again the order in which variables are entered, 

CMIM will select variable   . 

After selecting the variable   , the next feature to be selected should be    

since            is greater than           . However, CMIM computes the 

minimum between            and           , which is zero. Thus, the vari-

able    is discarded as a relevant variable, and the variable    is erroneously 

chosen as the third feature (order in which variables are entered). As the orig-

inal CMIM criterion prioritizes those variables that give the minimum condi-

tional MI, it will not find a solution to the XOR problem. In general, in prob-

lems where the variables are highly complementary (or dependent) to predict 

 , the CMIM algorithm will fail to find that dependence among the variables. 
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The new criterion proposed below changes the minimum function to the aver-

age function. Because                       , the maximum function 

will be applied to            and           . Since the latter term is zero, 

the variable    will be correctly selected. 

4  Enhanced conditional mutual information maximization 

criterion (CMIM-2) 

The proposed feature selection criterion is an improvement of the CMIM 

criterion. It maintains the advantages of the original criterion, but it solves the 

problem of variables that are relevant in pairs. 

Considering that we want to avoid the calculation of conditional MI in 

high dimensional spaces, we approach functional (8) by using arithmetical 

averages of the conditional MI. For this, let us define      
 
    where 

     , and        , and using the chain rule repeatedly for MI, the fol-

lowing expression is obtained as 

                                                     

                                                     
                                                                                      

                                                    
                                                                     

                                                        

    

 

 

 

 

 

(11) 

Note that the first term on the right hand size of equation (11) represents 

the MI between    and   given   , where    is the jth variable belonging to the 

subset  . The second term represents the remaining conditional MI present in 

high-dimensional spaces. Restricting the working space to variables         

and class  , i.e., avoiding the estimation of MI in spaces of more than three 

variables; the equation (11) can be simplified in a first order approximation to: 

          
 

 
           

    

  (12) 
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The new proposed criterion for feature selection is defined as: 

       

 
 

 
       

    
                                       

      
      

 

 
                           

    

  
(13) 

 

 

 

The computational cost of CMIM-2 algorithm depends on the way of esti-

mating           , which in the our case is               , where   is 

the number of classes of vector  ,   is the number of features in set   and   

is the number of data samples available. The estimation of MI is performed 

through contingency tables for discrete features and the Fraser’s algorithm [9] 

for continuous features. Fraser’s algorithm estimates MI by using adaptive 

histograms. The method chosen for sorting samples is heapsort [20], which 

has a complexity of          in the worst case.  

5 Experiments 

The proposed criterion was tested on three feature selection experiments. 

The first experiment uses the artificial data set MONK-1 [24], in order to 

show the importance of using the average conditional MI instead of the mini-

mum. The second experiment involves two datasets described in Table 2, 

which are commonly used to compare feature selection techniques. The third 

experiment partially replicates one of the experiments described by Fleuret [8] 

on the Thrombin dataset. In this section the performance of the proposed cri-

terion (CMIM-2) is compared with the original CMIM method and the crite-

rion of selection based on the highest mutual information between a single 

feature and the vector class (RANK) [6]. 

5.1 Experiment 1: MONK-1 

MONK-1 is one out of three problems generated from the MONK's prob-

lem [24], which describes the artificial domain of a robot using six attributes. 

Each problem is generated according to the classification task that must per-

form the robot, where the outputs are obtained as logical operations of the 

variables. For the MONK-1 problem, the output is obtained as: 
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Table 2. Datasets used in experiment 2. The column n contains the number of sam-

ples, column m contains the number of features, column c contains the number of 

classes, and column type contains the kind of features on each dataset: D: discrete, C: 

continuous. 

Dataset n m c type 

Arrhythmia 452 279 16 D,C 

Spambase 4601 57 2 D,C 

Table 3. Mutual information         between each variable and the vector class for 

the MONK-1 problem. 

                       

  0.0685 0.0073 0.0030 0.0182 0.2987 0.0031 

                      (14) 

where   and   stand for ‘identical to’ and OR function, respectively. 

As can be seen from (14), the variables that provide information of class   

are:           . Table 3 shows the relevant information of each variable with 

respect to the class (                ) and Table 4 shows the conditional 

MI (          ) for all pair of variables. 

As shown in Table 3, feature    has the highest information regarding the 

output. This result was expected since    does not interact with any other 

variable except the variable  . For selecting the second feature, the condition-

al mutual information             is estimated for each of the candidate fea-

tures                . The results can be seen in the column    of Table 4, 

where feature    has the highest value. The variables selected so far are com-

mon to both CMIM and CMIM-2 criteria. 

The third feature to be selected must be   , thereby completing the triplet 

of relevant variables for the MONK-1 problem. But as can be seen in the col-

umn    of Table 4, the conditional information            is maximum. 

CMIM will ignore the maximum value because its goal is to find those fea-

tures that have the greatest independence with respect to the variables pre-

viously selected (minimum in (9)), but also the greatest MI with respect to 

class   (maximum in (9)), i.e.,                                ,   
         . Thus, the feature selected by CMIM is   . 
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Table 4. Conditional mutual information            for each pair of variables of the 

MONK-1 problem. 

                        

   0 0.5096 0.0718 0.0654 0.0640 0.0745 

   0.4483 0 0.0095 0.0080 0.0100 0.0242 

   0.0062 0.0052 0 0.0116 0.0119 0.0251 

   0.0151 0.0189 0.0268 0 0.0331 0.0333 

   0.2942 0.3014 0.3076 0.3136 0 0.2993 

   0.0091 0.0200 0.0252 0.0182 0.0038 0 

 

In CMIM-2, the MI values of the candidate variable                   
with respect to class   conditional on each of the variables previously selected 

          are weighted, i.e.,                            . Thus CMIM-2 

can capture additional variable information and select feature    correctly. 

5.2 Experiment 2: Benchmark datasets 

In order to measure the performance of the proposed criterion two datasets 

available at the UCI repository [1] are used. The basic information for each 

dataset is given in Table 2. 

The proposed selection criterion (CMIM-2) was compared with the origi-

nal CMIM method [8] and the ranking method based on MI (RANK) [6]. 

For external validation, two classifiers were used: k-nearest neighbor clas-

sifier (KNN) and Support Vector Machine (SVM) with Gaussian kernel. The 

evaluation of feature subsets delivered by the different methods was made as 

follows: (i) the top 30 most relevant features delivered by each selection crite-

rion on each data set were drawn, (ii) 10 rounds of cross validation were per-

formed on subsets containing 1, 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 features 

drawn from the ranking yielded by each feature selection criterion. The 

neighborhood parameter in KNN and the kernel size parameter in SVM were 

selected by optimizing the validation error over the 10 rounds of cross valida-

tion. The percentage of correct classifications, i.e., the classifier accuracy, is 

presented in Figure 1 for the Arrhythmia data set. 

Figure 1 shows a significant increase in the classifier accuracy for  

CMIM-2 criterion with respect to CMIM and RANK criterion on the Arr-

hythmia dataset. This means that there are variables in the Arrhythmia data set 

that are highly complementary for the task of predicting the class outputs [18]. 

The CMIM results are comparable to RANK, because the minimum function 

in (9) is looking for variables that are independent of previously selected sub-

set of variables  , without taking into account the interaction between the 

candidate feature and the subset of selected variables  . 
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(a) (b) 

Figure 1. Average classification rate over 10 tests on the Arrhythmia dataset vs. 

number of variables selected by three feature selection criteria: RANK, CMIM and 

CMIM-2. (a) Using a Gaussian-SVM classifier. (b) Using a K-NN classifier. 

  
(a) (b) 

Figure 2. Average classification rate over 10 tests on the Spambase data set vs. num-

ber of variables selected by three feature selection criteria: RANK, CMIM and 

CMIM-2. (a) Using a Gaussian-SVM classifier. (b) Using a K-NN classifier. 

Figure 2 shows the results for the Spambase data set, where very similar 

classification rates were obtained for CMIM and CMIM-2 methods. In our 

extensive simulations we have found that the CMIM-2 performance is supe-

rior or equal to CMIM’s performance but never worse. 

5.3 Experiment 3: Thrombin data set 

The Thrombin data set was created for predicting molecular bioactivity for 

drug design. This database contains 1,909 samples and 139,351 features (ac-

tive or inactive). 
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In all experiments 10 rounds of cross validation were performed to choose 

the best model [21], where each partition kept the proportion of positive and 

negative examples. Moreover, we conducted Student’s paired two-tailed t-test 

in order to evaluate if there are statistical significant inferences between aver-

ages of cross validation error of CMIM-2 and RANK or CMIM. 

Because the Thrombin data set is highly unbalanced (42 positive examples 

and 1,867 negative examples), the training and validation errors were meas-

ured by using the balanced error rate (BER), defined as follows:  

    
     

 
  (15) 

where FP is the false positive rate and FN is the false negative rate. 

The validation experiments were performed by choosing the top 5 and 10 

relevant features delivered by the feature selection criterion. These features 

were entered as inputs to a SVM classifier with Gaussian kernel and a KNN 

classifier. The neighborhood parameter of KNN and kernel size of SVM were 

adjusted by minimizing BER. Due to the unbalanced data, other two classifi-

ers were used: linear perceptron (PCT) and a Naïve Bayesian classifier (NB). 

Tables 5 and 6 show the prediction error for different combinations of 

classifiers and feature selection methods using the top 5 and 10 features se-

lected, respectively. In addition, the p-values show that the difference in aver-

age errors between CMIM-2 and CMIM, and CMIM-2 and RANK, are statis-

tically significant. 

Table 5. Average BER obtained with different combinations of feature selection 

methods and classifiers for the first 5 featured selected of the Thrombin dataset. 

Classifier 
CMIM-2 CMIM RANK 

BER BER p-value BER p-value 

PCT 15.17 18.46 0.32 21.18 0.13 

NB 12.76 14.22 0.62 18.81 0.05 

SVM 15.85 26.61 0.03 24.74 0.02 

KNN 18.28 25.36 0.08 29.41 0.02 

 

Among all combinations, the CMIM-2-NB has the lower BER in valida-

tion, confirming the effectiveness of the proposed method. For the same clas-

sifier, it is found that CMIM-2 obtained in all cases lower BER values than 

CMIM and RANK, except for PCT with 10 features. 

Note that the results delivered by CMIM-2 for each classifier do not neces-

sarily match those published by Fleuret [8], since we use the whole set of 

139,351 variables, while Fleuret used 2,500 randomly selected features only. 
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Table 6. Average BER obtained with different combinations of feature selection 

methods and classifiers for the first 10 featured selected of the Thrombin dataset. 

Classifier 
CMIM-2 CMIM RANK 

BER BER p-value BER p-value 

PCT 20.91 26.29 0.18 18.68 0.49 

NB 15.21 16.59 0.55 18.76 0.08 

SVM 17.16 21.83 0.26 20.91 0.19 

KNN 17.10 24.33 0.03 22.77 0.14 

6 Conclusions 

An enhanced conditional mutual information algorithm for feature selec-

tion has been proposed. The new algorithm, called CMIM-2, is able to detect 

pairs of relevant variables that act complementarily in predicting the class. 

Experimental results for artificial and UCI benchmark datasets show that the 

proposed algorithm outperforms the original CMIM algorithm. 

An advantage of the proposed approach is that it is possible to improve the 

proposed criterion by considering a higher-order approximation of eq. (11). It 

would be of interest to study how it influences the selection of relevant va-

riables that act complementarily in sets of three o more features. These ideas 

can be used to identify and formalize new levels of interaction among va-

riables, beyond the traditional definitions of relevance and redundancy. 
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