PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solar Dryer with Electronic PID Controller for Dry Potato Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the research was to determine the amount of moist extractable matter from the precooked potato dough with the cut in the shape of sticks and the acceleration of the subtraction of moisture from the matter to be dried inside the solar dryer, controlling the flow of dry air entering the collector through six fans. The temperature and relative humidity in the dryer vary with the flow of air that enters the interior of the dryer and by the heat of the brass generated by the exposure of the extraction chamber to radiation from the Sun from 9:00 am. to 5:00 pm. The temperature and relative humidity values detected by the DHT 22 sensor were processed by the Arduino based microcontroller that has embedded the PID control program, whose outputs acted on the fans and heaters, fed with conventional energy, with respect to the setpoints of temperature 36.5 °C and relative humidity 33%. 26 temperature and relative humidity samples were taken during the day, inside the solar dryer chamber with electronic PID controller. As a result, an average controlled temperature of 36.36 °C and relative humidity of 33.115% were obtained in the dryer chamber, allowing the extraction of 73.16% of the weight of the wet matter from the precooked potato. Achieving, dry potato weighing 26.84% of the initial mass, in a drying time of 8 hours.
Słowa kluczowe
Twórcy
  • Faculty of Electronic-Systems Engineering, Universidad Nacional de Huancavelica, Jr. La Mar N° 755, PampasTayacaja, Huancavelica, Peru
  • Faculty of Electronic-Systems Engineering, Universidad Nacional de Huancavelica, Jr. La Mar N° 755, PampasTayacaja, Huancavelica, Peru
  • Faculty of Electronic-Systems Engineering, Universidad Nacional de Huancavelica, Jr. La Mar N° 755, PampasTayacaja, Huancavelica, Peru
Bibliografia
  • 1. Acosta Cuintaco, C.A. 2019. Analysis of potato production, marketing and export in the Peruvian market and its impact on the Latin American region.
  • 2. Batubara, F., Misran, E., Dina, S.F., & Heppy. 2017. Solar energy dryer kinetics using flat-plate finned collector and forced convection for potato drying. AIP Conference Proceedings, 1855(1), 70002.
  • 3. Becerra, J. 2017. Potato: Characteristics of National Production and Marketing in Metropolitan Lima. 4-13.
  • 4. Bista, D. 2016. Understanding and Design of an Arduino-based PID Controller.
  • 5. Camayo Lapa, B.F., Quispe Solano, M.Á., Huamán De La Cruz, A.R., Condezo Hurtado, D.E., Massipe Hernández, J.R., & Landa Guadalupe, L.E. 2020. Installation and evaluation of autonomous solar dryer for potato drying in Tarma. Mexican Journal of Agricultural Sciences, 11(6), 1221-1231.
  • 6. Damayanti, R., Prayogi, I.Y., & Basukesti, A.S. 2021. Design and Fabrication of Small-Scale Potato Peeling Machine with Lye Method. IOP Conference Series: Earth and Environmental Science, 757(1), 12031.
  • 7. Das, M., Alic, E., & Akpinar, E.K. 2021. Detailed analysis of mass transfer in solar food dryer with different methods. International Communications in Heat and Mass Transfer, 128, 105600.
  • 8. Eltawil, M.A., Azam, M.M., & Alghannam, A.O. 2018. Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renewable Energy, 116, 594-605.
  • 9. García-Oliveira, P., Fraga-Corral, M., Pereira, AG, Prieto, MA, & Simal-Gandara, J. 2020. Solutions for the sustainability of the food production and consumption system. Critical Reviews in Food Science and Nutrition, 1-17.
  • 10. Goel, A., Saraswat, M., & Chauhan, N.R. 2019. Energy and Performance Analysis of a new Solar Dryer. IOP Conference Series: Materials Science and Engineering, 691(1), 12080.
  • 11. Gupta, P.M., Das, A.S., Barai, R.C., Pusadkar, S.C., & Pawar, V.G. 2017. Design and construction of solar dryer for drying agricultural products. International Research Journal of Engineering and Technology, 4(3), 1946.
  • 12. Kannel, P.R., Lee, S., Lee, Y.-S., Kanel, S.R., & Khan, S.P. 2007. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring and Assessment, 132(1), 93-110. https://doi.org/10.1007/s10661-006-9505-1
  • 13. Lati, M., Boughali, S., Bouguettaia, H., Mennouche, D., Bechki, D., Khemgani, M.M., & Mir, B. 2017. Effect of solar drying on the quality of potato. Int J Sci Res Eng Technol, 5, 1-4.
  • 14. Norton, B. (2017). Characteristics of Different Systems for the Solar Drying of Crops. In Solar Drying Technology (pp. 69-88). Springer.
  • 15. Nukulwar, M.R., & Tungikar, V.B. 2021. A review on performance evaluation of solar dryer and its material for drying agricultural products. Materials Today: Proceedings, 46, 345-349.
  • 16. Patil, D.S., Arakerimath, R.R., & Walke, P.V. 2018. Thermoelectric materials and heat exchangers for power generation – A review. Renewable and Sustainable Energy Reviews, 95, 1-22.
  • 17. Pedreschi, F., Cortés, P., & Mariotti, M.S. 2018. Potato crisps and snack foods. Reference Module in Food Science, 2018, 1-10.
  • 18. Raghavi, L.M., Moses, J.A., & Anandharamakrishnan, C. 2018. Refractance window drying of foods: A review. Journal of food engineering, 222, 267-275.
  • 19. Sharif, Z.I.M., Mustapha, F.A., Jai, J., Yusof, N.M., & Zaki, N.A.M. 2017. Review on methods for preservation and natural preservatives for extending the food longevity. Chemical Engineering Research Bulletin, 145-153.
  • 20. Singh, D., Singh, A.K., Singh, S.P., & Poonia, S. 2017. Year round potential of greenhouse as a solar dryer for drying crop produce. Agricultural Engineering Today, 41(2), 29-33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-526e5013-afdc-4a44-9daa-2f9615986216
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.